SelfPose3d: Self-Supervised Multi-Person Multi-View 3d Pose Estimation
- URL: http://arxiv.org/abs/2404.02041v2
- Date: Sat, 8 Jun 2024 12:54:40 GMT
- Title: SelfPose3d: Self-Supervised Multi-Person Multi-View 3d Pose Estimation
- Authors: Vinkle Srivastav, Keqi Chen, Nicolas Padoy,
- Abstract summary: We present a new self-supervised approach, SelfPose3d, for estimating 3d poses of multiple persons from multiple camera views.
Unlike current state-of-the-art fully-supervised methods, our approach does not require any 2d or 3d ground-truth poses.
Our experiments and analysis on three public benchmark datasets, including Panoptic, Shelf, and Campus, show the effectiveness of our approach.
- Score: 2.929565541219051
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a new self-supervised approach, SelfPose3d, for estimating 3d poses of multiple persons from multiple camera views. Unlike current state-of-the-art fully-supervised methods, our approach does not require any 2d or 3d ground-truth poses and uses only the multi-view input images from a calibrated camera setup and 2d pseudo poses generated from an off-the-shelf 2d human pose estimator. We propose two self-supervised learning objectives: self-supervised person localization in 3d space and self-supervised 3d pose estimation. We achieve self-supervised 3d person localization by training the model on synthetically generated 3d points, serving as 3d person root positions, and on the projected root-heatmaps in all the views. We then model the 3d poses of all the localized persons with a bottleneck representation, map them onto all views obtaining 2d joints, and render them using 2d Gaussian heatmaps in an end-to-end differentiable manner. Afterwards, we use the corresponding 2d joints and heatmaps from the pseudo 2d poses for learning. To alleviate the intrinsic inaccuracy of the pseudo labels, we propose an adaptive supervision attention mechanism to guide the self-supervision. Our experiments and analysis on three public benchmark datasets, including Panoptic, Shelf, and Campus, show the effectiveness of our approach, which is comparable to fully-supervised methods. Code: https://github.com/CAMMA-public/SelfPose3D. Video demo: https://youtu.be/GAqhmUIr2E8.
Related papers
- Unsupervised Multi-Person 3D Human Pose Estimation From 2D Poses Alone [4.648549457266638]
We present one of the first studies investigating the feasibility of unsupervised multi-person 2D-3D pose estimation.
Our method involves independently lifting each subject's 2D pose to 3D, before combining them in a shared 3D coordinate system.
This by itself enables us to retrieve an accurate 3D reconstruction of their poses.
arXiv Detail & Related papers (2023-09-26T11:42:56Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z) - Learning Realistic Human Reposing using Cyclic Self-Supervision with 3D
Shape, Pose, and Appearance Consistency [55.94908688207493]
We propose a self-supervised framework named SPICE that closes the image quality gap with supervised methods.
The key insight enabling self-supervision is to exploit 3D information about the human body in several ways.
SPICE achieves state-of-the-art performance on the DeepFashion dataset.
arXiv Detail & Related papers (2021-10-11T17:48:50Z) - Self-Supervised 3D Human Pose Estimation with Multiple-View Geometry [2.7541825072548805]
We present a self-supervised learning algorithm for 3D human pose estimation of a single person based on a multiple-view camera system.
We propose a four-loss function learning algorithm, which does not require any 2D or 3D body pose ground-truth.
arXiv Detail & Related papers (2021-08-17T17:31:24Z) - VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the
Wild [98.69191256693703]
We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines.
It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in the environment.
It outperforms the state-of-the-art methods by a large margin on three public datasets including Shelf, Campus and CMU Panoptic.
arXiv Detail & Related papers (2021-08-05T08:35:44Z) - TriPose: A Weakly-Supervised 3D Human Pose Estimation via Triangulation
from Video [23.00696619207748]
Estimating 3D human poses from video is a challenging problem.
The lack of 3D human pose annotations is a major obstacle for supervised training and for generalization to unseen datasets.
We propose a weakly-supervised training scheme that does not require 3D annotations or calibrated cameras.
arXiv Detail & Related papers (2021-05-14T00:46:48Z) - SMAP: Single-Shot Multi-Person Absolute 3D Pose Estimation [46.85865451812981]
We propose a novel system that first regresses a set of 2.5D representations of body parts and then reconstructs the 3D absolute poses based on these 2.5D representations with a depth-aware part association algorithm.
Such a single-shot bottom-up scheme allows the system to better learn and reason about the inter-person depth relationship, improving both 3D and 2D pose estimation.
arXiv Detail & Related papers (2020-08-26T09:56:07Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation.
We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation.
We propose a practical deployment paradigm where paired 2D or 3D pose annotations are unavailable.
arXiv Detail & Related papers (2020-08-04T07:54:25Z) - From Image Collections to Point Clouds with Self-supervised Shape and
Pose Networks [53.71440550507745]
Reconstructing 3D models from 2D images is one of the fundamental problems in computer vision.
We propose a deep learning technique for 3D object reconstruction from a single image.
We learn both 3D point cloud reconstruction and pose estimation networks in a self-supervised manner.
arXiv Detail & Related papers (2020-05-05T04:25:16Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
We propose to estimate 3D human pose from multi-view images and a few IMUs attached at person's limbs.
It operates by firstly detecting 2D poses from the two signals, and then lifting them to the 3D space.
The simple two-step approach reduces the error of the state-of-the-art by a large margin on a public dataset.
arXiv Detail & Related papers (2020-03-25T00:26:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.