Learning Transactions Representations for Information Management in Banks: Mastering Local, Global, and External Knowledge
- URL: http://arxiv.org/abs/2404.02047v3
- Date: Mon, 03 Feb 2025 15:33:55 GMT
- Title: Learning Transactions Representations for Information Management in Banks: Mastering Local, Global, and External Knowledge
- Authors: Alexandra Bazarova, Maria Kovaleva, Ilya Kuleshov, Evgenia Romanenkova, Alexander Stepikin, Alexandr Yugay, Dzhambulat Mollaev, Ivan Kireev, Andrey Savchenko, Alexey Zaytsev,
- Abstract summary: Banks use artificial intelligence to optimize diverse business processes, aiming to improve customer experience.
Most of the customer-related tasks can be categorized into two groups: 1) local ones, which focus on a client's current state, such as transaction forecasting, and 2) global ones, which consider the general customer behaviour, e.g., predicting successful loan repayment.
We introduce a novel approach, which enriches the client's representation by incorporating external information gathered from other clients.
- Score: 95.7760348824795
- License:
- Abstract: In today's world, banks use artificial intelligence to optimize diverse business processes, aiming to improve customer experience. Most of the customer-related tasks can be categorized into two groups: 1) local ones, which focus on a client's current state, such as transaction forecasting, and 2) global ones, which consider the general customer behaviour, e.g., predicting successful loan repayment. Unfortunately, maintaining separate models for each task is costly. Therefore, to better facilitate information management, we compared eight state-of-the-art unsupervised methods on 11 tasks in search for a one-size-fits-all solution. Contrastive self-supervised learning methods were demonstrated to excel at global problems, while generative techniques were superior at local tasks. We also introduced a novel approach, which enriches the client's representation by incorporating external information gathered from other clients. Our method outperforms classical models, boosting accuracy by up to 20\%.
Related papers
- Uniting contrastive and generative learning for event sequences models [51.547576949425604]
This study investigates the integration of two self-supervised learning techniques - instance-wise contrastive learning and a generative approach based on restoring masked events in latent space.
Experiments conducted on several public datasets, focusing on sequence classification and next-event type prediction, show that the integrated method achieves superior performance compared to individual approaches.
arXiv Detail & Related papers (2024-08-19T13:47:17Z) - Retail store customer behavior analysis system: Design and
Implementation [2.215731214298625]
We propose a framework that includes three primary parts: mathematical modeling of customer behaviors, behavior analysis using an efficient deep learning based system, and individual and group behavior visualization.
Each module and the entire system were validated using data from actual situations in a retail store.
arXiv Detail & Related papers (2023-09-05T06:26:57Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
We introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning.
Specifically, we propose a novel algorithm called emphFedABML, which employs hierarchical variational inference across clients.
Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data.
arXiv Detail & Related papers (2023-07-05T11:58:58Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
We propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget.
The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the local clients.
We propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU)
arXiv Detail & Related papers (2022-11-24T13:08:43Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
Local training on non-iid distributed data results in deflected local optimum.
A natural solution is to gather all client data onto the server, such that the server has a global view of the entire data distribution.
In this paper, we put forth an idea to collect and leverage global knowledge on the server without hindering data privacy.
arXiv Detail & Related papers (2022-11-20T06:13:06Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Towards Intelligent Risk-based Customer Segmentation in Banking [0.0]
We present an intelligent data-driven pipeline composed of a set of processing elements to move customers' data from one system to another.
The goal is to present a novel intelligent customer segmentation process which automates the feature engineering, i.e., the process of using (banking) domain knowledge to extract features from raw data.
Our proposed method is able to achieve accuracy of 91% compared to classical approaches in terms of detecting, identifying and classifying transaction to the right classification.
arXiv Detail & Related papers (2020-09-29T11:22:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.