Retail store customer behavior analysis system: Design and
Implementation
- URL: http://arxiv.org/abs/2309.03232v1
- Date: Tue, 5 Sep 2023 06:26:57 GMT
- Title: Retail store customer behavior analysis system: Design and
Implementation
- Authors: Tuan Dinh Nguyen, Keisuke Hihara, Tung Cao Hoang, Yumeka Utada,
Akihiko Torii, Naoki Izumi, Nguyen Thanh Thuy and Long Quoc Tran
- Abstract summary: We propose a framework that includes three primary parts: mathematical modeling of customer behaviors, behavior analysis using an efficient deep learning based system, and individual and group behavior visualization.
Each module and the entire system were validated using data from actual situations in a retail store.
- Score: 2.215731214298625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding customer behavior in retail stores plays a crucial role in
improving customer satisfaction by adding personalized value to services.
Behavior analysis reveals both general and detailed patterns in the interaction
of customers with a store items and other people, providing store managers with
insight into customer preferences. Several solutions aim to utilize this data
by recognizing specific behaviors through statistical visualization. However,
current approaches are limited to the analysis of small customer behavior sets,
utilizing conventional methods to detect behaviors. They do not use deep
learning techniques such as deep neural networks, which are powerful methods in
the field of computer vision. Furthermore, these methods provide limited
figures when visualizing the behavioral data acquired by the system. In this
study, we propose a framework that includes three primary parts: mathematical
modeling of customer behaviors, behavior analysis using an efficient deep
learning based system, and individual and group behavior visualization. Each
module and the entire system were validated using data from actual situations
in a retail store.
Related papers
- Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph [49.66272783945571]
We propose Personalized Federated knowledge graph Embedding with client-wise relation graph.
PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients.
We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models.
arXiv Detail & Related papers (2024-06-17T17:44:53Z) - What User Behaviors Make the Differences During the Process of Visual
Analytics? [1.5285292154680246]
This work presents a study on a comprehensive data collection of user behaviors, and our analysis approach with time-series classification methods.
Our user study collects user behaviors on a diverse set of visualization tasks with two comparable systems, desktop and immersive visualizations.
Our results reveal that user behaviors can be distinguished during the process of visual analytics and there is a potentially strong association between the physical behaviors of users and the visualization tasks they perform.
arXiv Detail & Related papers (2023-11-01T17:45:52Z) - A Hybrid Statistical-Machine Learning Approach for Analysing Online
Customer Behavior: An Empirical Study [2.126171264016785]
We develop a hybrid interpretable model to analyse 454,897 online customers' behavior for a particular product category at the largest online retailer in China, that is JD.
Our results reveal that customers' product choice is insensitive to the promised delivery time, but this factor significantly impacts customers' order quantity.
We identify product classes for which certain discounting approaches are more effective and provide recommendations on better use of different discounting tools.
arXiv Detail & Related papers (2022-12-01T19:37:29Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - OPAM: Online Purchasing-behavior Analysis using Machine learning [0.8121462458089141]
We present a customer purchasing behavior analysis system using supervised, unsupervised and semi-supervised learning methods.
The proposed system analyzes session and user-journey level purchasing behaviors to identify customer categories/clusters.
arXiv Detail & Related papers (2021-02-02T17:29:52Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
We argue that focusing on tail users could bring more benefits and address the long tails issue.
Specifically, we propose a gradient alignment and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail.
arXiv Detail & Related papers (2020-10-22T03:12:02Z) - Friendship is All we Need: A Multi-graph Embedding Approach for Modeling
Customer Behavior [1.181206257787103]
We propose a multi-graph embedding approach for creating a non-linear representation of customers.
We are able to predict users' future behavior with a reasonably high accuracy only by having the information of their friendship network.
arXiv Detail & Related papers (2020-10-06T14:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.