Red-Teaming Segment Anything Model
- URL: http://arxiv.org/abs/2404.02067v1
- Date: Tue, 2 Apr 2024 16:07:50 GMT
- Title: Red-Teaming Segment Anything Model
- Authors: Krzysztof Jankowski, Bartlomiej Sobieski, Mateusz Kwiatkowski, Jakub Szulc, Michal Janik, Hubert Baniecki, Przemyslaw Biecek,
- Abstract summary: The Segment Anything Model is one of the first and most well-known foundation models for computer vision segmentation tasks.
This work presents a multi-faceted red-teaming analysis that tests the Segment Anything Model against challenging tasks.
- Score: 6.66538432730354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models have emerged as pivotal tools, tackling many complex tasks through pre-training on vast datasets and subsequent fine-tuning for specific applications. The Segment Anything Model is one of the first and most well-known foundation models for computer vision segmentation tasks. This work presents a multi-faceted red-teaming analysis that tests the Segment Anything Model against challenging tasks: (1) We analyze the impact of style transfer on segmentation masks, demonstrating that applying adverse weather conditions and raindrops to dashboard images of city roads significantly distorts generated masks. (2) We focus on assessing whether the model can be used for attacks on privacy, such as recognizing celebrities' faces, and show that the model possesses some undesired knowledge in this task. (3) Finally, we check how robust the model is to adversarial attacks on segmentation masks under text prompts. We not only show the effectiveness of popular white-box attacks and resistance to black-box attacks but also introduce a novel approach - Focused Iterative Gradient Attack (FIGA) that combines white-box approaches to construct an efficient attack resulting in a smaller number of modified pixels. All of our testing methods and analyses indicate a need for enhanced safety measures in foundation models for image segmentation.
Related papers
- On Evaluating Adversarial Robustness of Volumetric Medical Segmentation Models [59.45628259925441]
Volumetric medical segmentation models have achieved significant success on organ and tumor-based segmentation tasks.
Their vulnerability to adversarial attacks remains largely unexplored.
This underscores the importance of investigating the robustness of existing models.
arXiv Detail & Related papers (2024-06-12T17:59:42Z) - Unsegment Anything by Simulating Deformation [67.10966838805132]
"Anything Unsegmentable" is a task to grant any image "the right to be unsegmented"
We aim to achieve transferable adversarial attacks against all prompt-based segmentation models.
Our approach focuses on disrupting image encoder features to achieve prompt-agnostic attacks.
arXiv Detail & Related papers (2024-04-03T09:09:42Z) - Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on
Segmentation Models [61.46999584579775]
General purpose segmentation models are able to generate (semantic) segmentation masks from a variety of prompts.
In particular, input images are pre-processed by an image encoder to obtain embedding vectors which are later used for mask predictions.
We show that even imperceptible perturbations of radius $epsilon=1/255$ are often sufficient to drastically modify the masks predicted with point, box and text prompts.
arXiv Detail & Related papers (2023-11-24T12:57:34Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
Deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify.
We propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time.
Our method effectively enhances the model's resilience against both score-based and decision-based black-box attacks.
arXiv Detail & Related papers (2023-10-01T03:53:23Z) - On Evaluating the Adversarial Robustness of Semantic Segmentation Models [0.0]
A number of adversarial training approaches have been proposed as a defense against adversarial perturbation.
We show for the first time that a number of models in previous work that are claimed to be robust are in fact not robust at all.
We then evaluate simple adversarial training algorithms that produce reasonably robust models even under our set of strong attacks.
arXiv Detail & Related papers (2023-06-25T11:45:08Z) - Attack-SAM: Towards Attacking Segment Anything Model With Adversarial
Examples [68.5719552703438]
Segment Anything Model (SAM) has attracted significant attention recently, due to its impressive performance on various downstream tasks.
Deep vision models are widely recognized as vulnerable to adversarial examples, which fool the model to make wrong predictions with imperceptible perturbation.
This work is the first of its kind to conduct a comprehensive investigation on how to attack SAM with adversarial examples.
arXiv Detail & Related papers (2023-05-01T15:08:17Z) - Ensemble-based Blackbox Attacks on Dense Prediction [16.267479602370543]
We show that a carefully designed ensemble can create effective attacks for a number of victim models.
In particular, we show that normalization of the weights for individual models plays a critical role in the success of the attacks.
Our proposed method can also generate a single perturbation that can fool multiple blackbox detection and segmentation models simultaneously.
arXiv Detail & Related papers (2023-03-25T00:08:03Z) - Orthogonal Deep Models As Defense Against Black-Box Attacks [71.23669614195195]
We study the inherent weakness of deep models in black-box settings where the attacker may develop the attack using a model similar to the targeted model.
We introduce a novel gradient regularization scheme that encourages the internal representation of a deep model to be orthogonal to another.
We verify the effectiveness of our technique on a variety of large-scale models.
arXiv Detail & Related papers (2020-06-26T08:29:05Z) - Model Watermarking for Image Processing Networks [120.918532981871]
How to protect the intellectual property of deep models is a very important but seriously under-researched problem.
We propose the first model watermarking framework for protecting image processing models.
arXiv Detail & Related papers (2020-02-25T18:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.