Explore In-Context Segmentation via Latent Diffusion Models
- URL: http://arxiv.org/abs/2403.09616v2
- Date: Sun, 09 Mar 2025 11:58:01 GMT
- Title: Explore In-Context Segmentation via Latent Diffusion Models
- Authors: Chaoyang Wang, Xiangtai Li, Henghui Ding, Lu Qi, Jiangning Zhang, Yunhai Tong, Chen Change Loy, Shuicheng Yan,
- Abstract summary: In-context segmentation aims to segment objects using given reference images.<n>Most existing approaches adopt metric learning or masked image modeling to build the correlation between visual prompts and input image queries.<n>This work approaches the problem from a fresh perspective - unlocking the capability of the latent diffusion model for in-context segmentation.
- Score: 132.26274147026854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context segmentation has drawn increasing attention with the advent of vision foundation models. Its goal is to segment objects using given reference images. Most existing approaches adopt metric learning or masked image modeling to build the correlation between visual prompts and input image queries. This work approaches the problem from a fresh perspective - unlocking the capability of the latent diffusion model (LDM) for in-context segmentation and investigating different design choices. Specifically, we examine the problem from three angles: instruction extraction, output alignment, and meta-architectures. We design a two-stage masking strategy to prevent interfering information from leaking into the instructions. In addition, we propose an augmented pseudo-masking target to ensure the model predicts without forgetting the original images. Moreover, we build a new and fair in-context segmentation benchmark that covers both image and video datasets. Experiments validate the effectiveness of our approach, demonstrating comparable or even stronger results than previous specialist or visual foundation models. We hope our work inspires others to rethink the unification of segmentation and generation.
Related papers
- How to Squeeze An Explanation Out of Your Model [13.154512864498912]
This paper proposes an approach for interpretability that is model-agnostic.
By including an SE block prior to the classification layer of any model, we are able to retrieve the most influential features.
Results show that this new SE-based interpretability can be applied to various models in image and video/multi-modal settings.
arXiv Detail & Related papers (2024-12-06T15:47:53Z) - Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - SegICL: A Multimodal In-context Learning Framework for Enhanced Segmentation in Medical Imaging [24.32438479339158]
We introduce SegICL, a novel approach leveraging In-Context Learning (ICL) for image segmentation.
SegICL has the capability to employ text-guided segmentation and conduct in-context learning with a small set of image-mask pairs.
The performance of segmentation when provided thre-shots is approximately 1.5 times better than the performance in a zero-shot setting.
arXiv Detail & Related papers (2024-03-25T09:43:56Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions.
We propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations.
arXiv Detail & Related papers (2023-12-29T07:59:07Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - LOCATE: Self-supervised Object Discovery via Flow-guided Graph-cut and
Bootstrapped Self-training [13.985488693082981]
We propose a self-supervised object discovery approach that leverages motion and appearance information to produce high-quality object segmentation masks.
We demonstrate the effectiveness of our approach, named LOCATE, on multiple standard video object segmentation, image saliency detection, and object segmentation benchmarks.
arXiv Detail & Related papers (2023-08-22T07:27:09Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - D-LEMA: Deep Learning Ensembles from Multiple Annotations -- Application
to Skin Lesion Segmentation [14.266037264648533]
Leveraging a collection of annotators' opinions for an image is an interesting way of estimating a gold standard.
We propose an approach to handle annotators' disagreements when training a deep model.
arXiv Detail & Related papers (2020-12-14T01:51:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.