論文の概要: EGTR: Extracting Graph from Transformer for Scene Graph Generation
- arxiv url: http://arxiv.org/abs/2404.02072v5
- Date: Mon, 24 Jun 2024 15:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 01:12:30.539530
- Title: EGTR: Extracting Graph from Transformer for Scene Graph Generation
- Title(参考訳): EGTR:Scene Graph 生成のための Transformer からのグラフ抽出
- Authors: Jinbae Im, JeongYeon Nam, Nokyung Park, Hyungmin Lee, Seunghyun Park,
- Abstract要約: SGG(Scene Graph Generation)は、オブジェクトを検出し、オブジェクト間の関係を予測するための課題である。
本稿では,DETRデコーダのマルチヘッド自己アテンション層で学習した様々な関係から関係グラフを抽出する軽量一段SGGモデルを提案する。
本稿では,Visual Genome と Open Image V6 データセットに対する提案手法の有効性と有効性を示す。
- 参考スコア(独自算出の注目度): 5.935927309154952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene Graph Generation (SGG) is a challenging task of detecting objects and predicting relationships between objects. After DETR was developed, one-stage SGG models based on a one-stage object detector have been actively studied. However, complex modeling is used to predict the relationship between objects, and the inherent relationship between object queries learned in the multi-head self-attention of the object detector has been neglected. We propose a lightweight one-stage SGG model that extracts the relation graph from the various relationships learned in the multi-head self-attention layers of the DETR decoder. By fully utilizing the self-attention by-products, the relation graph can be extracted effectively with a shallow relation extraction head. Considering the dependency of the relation extraction task on the object detection task, we propose a novel relation smoothing technique that adjusts the relation label adaptively according to the quality of the detected objects. By the relation smoothing, the model is trained according to the continuous curriculum that focuses on object detection task at the beginning of training and performs multi-task learning as the object detection performance gradually improves. Furthermore, we propose a connectivity prediction task that predicts whether a relation exists between object pairs as an auxiliary task of the relation extraction. We demonstrate the effectiveness and efficiency of our method for the Visual Genome and Open Image V6 datasets. Our code is publicly available at https://github.com/naver-ai/egtr.
- Abstract(参考訳): SGG(Scene Graph Generation)は、オブジェクトを検出し、オブジェクト間の関係を予測するための課題である。
DETRの開発後、一段物体検出器に基づく一段SGGモデルが活発に研究されている。
しかし、オブジェクト間の関係を予測するために複雑なモデリングが使用され、オブジェクト検出器のマルチヘッド自己アテンションで学習したオブジェクトクエリー間の固有の関係は無視されている。
本稿では,DETRデコーダのマルチヘッド自己アテンション層で学習した様々な関係から関係グラフを抽出する軽量一段SGGモデルを提案する。
自己注意副産物を十分に活用することにより、浅い関係抽出ヘッドで関係グラフを効果的に抽出することができる。
対象検出タスクにおける関係抽出タスクの依存性を考慮して,検出対象の品質に応じて関係ラベルを適応的に調整する新しい関係平滑化手法を提案する。
関係の平滑化により、モデルは訓練開始時の対象検出タスクに焦点を当てた連続カリキュラムに従って訓練され、対象検出性能が徐々に向上するにつれてマルチタスク学習を行う。
さらに,関係抽出の補助タスクとして,オブジェクトペア間に関係が存在するかどうかを予測する接続予測タスクを提案する。
本稿では,Visual Genome と Open Image V6 データセットに対する提案手法の有効性と有効性を示す。
私たちのコードはhttps://github.com/naver-ai/egtr.comで公開されています。
関連論文リスト
- Relation Rectification in Diffusion Model [64.84686527988809]
本稿では,最初に生成できない関係を正確に表現するためにモデルを洗練することを目的とした,リレーション・リクティフィケーション(Relation Rectification)と呼ばれる新しいタスクを紹介する。
異種グラフ畳み込みネットワーク(HGCN)を利用した革新的な解を提案する。
軽量HGCNは、テキストエンコーダによって生成されたテキスト埋め込みを調整し、埋め込み空間におけるテキスト関係の正確な反映を保証する。
論文 参考訳(メタデータ) (2024-03-29T15:54:36Z) - Scene-Graph ViT: End-to-End Open-Vocabulary Visual Relationship Detection [14.22646492640906]
オープン語彙の視覚的関係検出のための単純かつ高効率なデコーダレスアーキテクチャを提案する。
我々のモデルはTransformerベースの画像エンコーダで、オブジェクトをトークンとして表現し、それらの関係を暗黙的にモデル化する。
提案手法は,ビジュアルゲノムおよび大語彙GQAベンチマーク上で,リアルタイムな推論速度で,最先端の関係検出性能を実現する。
論文 参考訳(メタデータ) (2024-03-21T10:15:57Z) - Towards a Unified Transformer-based Framework for Scene Graph Generation
and Human-object Interaction Detection [116.21529970404653]
本稿では,Transformerアーキテクチャに基づく一段階統一モデルであるSG2HOI+を紹介する。
本手法では,SGGとHOI検出のタスクをシームレスに統一する2つの対話型階層変換器を用いる。
提案手法は最先端のHOI法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-03T07:25:57Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Detecting Objects with Context-Likelihood Graphs and Graph Refinement [45.70356990655389]
本研究の目的は,オブジェクトと関係を別々に学習する既存の手法とは対照的に,オブジェクトの関係分布を共同で学習することである。
本稿では,オブジェクト間関係と初期クラス予測から画像のグラフィカルな表現を生成する新しい手法を提案する。
次に,エネルギーに基づくモデリング手法を用いて接合部を学習し,与えられた画像に対して文脈類似グラフを反復的に改良する。
論文 参考訳(メタデータ) (2022-12-23T15:27:21Z) - Relation Regularized Scene Graph Generation [206.76762860019065]
SGG(Scene Graph Generation)は、検出されたオブジェクトの上に構築され、オブジェクトのペアの視覚的関係を予測する。
本稿では,2つのオブジェクト間の関係を予測できる関係正規化ネットワーク(R2-Net)を提案する。
我々のR2-Netはオブジェクトラベルを効果的に洗練し、シーングラフを生成する。
論文 参考訳(メタデータ) (2022-02-22T11:36:49Z) - Mutual Graph Learning for Camouflaged Object Detection [31.422775969808434]
主な課題は、前景の物体と背景の環境との固有の類似性によって、深いモデルによって抽出された特徴が区別できないことである。
我々は,正規格子からグラフ領域への従来の相互学習の考え方を一般化する,新しい相互グラフ学習モデルを設計する。
すべてのタスク間インタラクションをモデリングするために共有関数を使用するほとんどの相互学習アプローチとは対照的に、mglは異なる補完関係を扱うための型付き関数を備えている。
論文 参考訳(メタデータ) (2021-04-03T10:14:39Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。