3D Congealing: 3D-Aware Image Alignment in the Wild
- URL: http://arxiv.org/abs/2404.02125v1
- Date: Tue, 2 Apr 2024 17:32:12 GMT
- Title: 3D Congealing: 3D-Aware Image Alignment in the Wild
- Authors: Yunzhi Zhang, Zizhang Li, Amit Raj, Andreas Engelhardt, Yuanzhen Li, Tingbo Hou, Jiajun Wu, Varun Jampani,
- Abstract summary: 3D Congealing is a problem of 3D-aware alignment for 2D images capturing semantically similar objects.
We introduce a general framework that tackles the task without assuming shape templates, poses, or any camera parameters.
Our framework can be used for various tasks such as correspondence matching, pose estimation, and image editing.
- Score: 44.254247801001675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose 3D Congealing, a novel problem of 3D-aware alignment for 2D images capturing semantically similar objects. Given a collection of unlabeled Internet images, our goal is to associate the shared semantic parts from the inputs and aggregate the knowledge from 2D images to a shared 3D canonical space. We introduce a general framework that tackles the task without assuming shape templates, poses, or any camera parameters. At its core is a canonical 3D representation that encapsulates geometric and semantic information. The framework optimizes for the canonical representation together with the pose for each input image, and a per-image coordinate map that warps 2D pixel coordinates to the 3D canonical frame to account for the shape matching. The optimization procedure fuses prior knowledge from a pre-trained image generative model and semantic information from input images. The former provides strong knowledge guidance for this under-constraint task, while the latter provides the necessary information to mitigate the training data bias from the pre-trained model. Our framework can be used for various tasks such as correspondence matching, pose estimation, and image editing, achieving strong results on real-world image datasets under challenging illumination conditions and on in-the-wild online image collections.
Related papers
- Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation [2.3213238782019316]
GIMDiffusion is a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images.
We exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion.
In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models.
arXiv Detail & Related papers (2024-09-05T17:21:54Z) - Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
In this work, we explore a central 3D scene modeling task, namely, semantic scene reconstruction without using any 3D annotations.
The key idea of our approach is to design a trainable model that employs both incomplete 3D reconstructions and their corresponding source RGB-D images.
Our method achieves the state-of-the-art performance of semantic scene completion on two large-scale benchmark datasets MatterPort3D and ScanNet.
arXiv Detail & Related papers (2023-02-07T17:47:52Z) - Self-Supervised Image Representation Learning with Geometric Set
Consistency [50.12720780102395]
We propose a method for self-supervised image representation learning under the guidance of 3D geometric consistency.
Specifically, we introduce 3D geometric consistency into a contrastive learning framework to enforce the feature consistency within image views.
arXiv Detail & Related papers (2022-03-29T08:57:33Z) - Fully Understanding Generic Objects: Modeling, Segmentation, and
Reconstruction [33.95791350070165]
Inferring 3D structure of a generic object from a 2D image is a long-standing objective of computer vision.
We take an alternative approach with semi-supervised learning. That is, for a 2D image of a generic object, we decompose it into latent representations of category, shape and albedo.
We show that the complete shape and albedo modeling enables us to leverage real 2D images in both modeling and model fitting.
arXiv Detail & Related papers (2021-04-02T02:39:29Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
We propose a trainable framework for learning a deformable 3D geometry model from inhomogeneous image collections.
We in addition obtain the underlying 3D geometry of the objects depicted in the 2D images.
arXiv Detail & Related papers (2021-03-31T17:25:36Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z) - Self-Supervised 2D Image to 3D Shape Translation with Disentangled
Representations [92.89846887298852]
We present a framework to translate between 2D image views and 3D object shapes.
We propose SIST, a Self-supervised Image to Shape Translation framework.
arXiv Detail & Related papers (2020-03-22T22:44:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.