論文の概要: GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image
- arxiv url: http://arxiv.org/abs/2404.02152v1
- Date: Tue, 2 Apr 2024 17:58:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 15:20:18.256774
- Title: GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image
- Title(参考訳): GeneAvatar: 単一画像からのジェネリック表現対応ボリュームヘッドアバター編集
- Authors: Chong Bao, Yinda Zhang, Yuan Li, Xiyu Zhang, Bangbang Yang, Hujun Bao, Marc Pollefeys, Guofeng Zhang, Zhaopeng Cui,
- Abstract要約: 本稿では,多種多様な3DMM駆動ヘッドアバターに適用可能な汎用的なアバター編集手法を提案する。
この目的を達成するために、単一の画像から一貫した3D修正フィールドへのリフト2D編集を可能にする新しい表現対応修正生成モデルを設計する。
- 参考スコア(独自算出の注目度): 89.70322127648349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, we have witnessed the explosive growth of various volumetric representations in modeling animatable head avatars. However, due to the diversity of frameworks, there is no practical method to support high-level applications like 3D head avatar editing across different representations. In this paper, we propose a generic avatar editing approach that can be universally applied to various 3DMM driving volumetric head avatars. To achieve this goal, we design a novel expression-aware modification generative model, which enables lift 2D editing from a single image to a consistent 3D modification field. To ensure the effectiveness of the generative modification process, we develop several techniques, including an expression-dependent modification distillation scheme to draw knowledge from the large-scale head avatar model and 2D facial texture editing tools, implicit latent space guidance to enhance model convergence, and a segmentation-based loss reweight strategy for fine-grained texture inversion. Extensive experiments demonstrate that our method delivers high-quality and consistent results across multiple expression and viewpoints. Project page: https://zju3dv.github.io/geneavatar/
- Abstract(参考訳): 近年, アニマタブルヘッドアバターのモデル化において, 様々な体積表現の爆発的な成長が見られた。
しかし、フレームワークの多様性のため、異なる表現をまたいだ3Dヘッドアバター編集のような高レベルのアプリケーションをサポートするための実践的な方法はない。
本稿では,多種多様な3DMM駆動ヘッドアバターに適用可能な汎用的なアバター編集手法を提案する。
この目的を達成するために、単一の画像から一貫した3D修正フィールドへのリフト2D編集を可能にする新しい表現対応修正生成モデルを設計する。
生成的修正プロセスの有効性を確保するため, 大規模頭部アバターモデルと2次元顔テクスチャ編集ツールから知識を引き出す表現依存型改質蒸留法, モデル収束性を高める暗黙の潜在空間ガイダンス, 細粒度テクスチャインバージョンのためのセグメンテーションに基づくロスリウェイト戦略などを開発した。
大規模な実験により,本手法は複数の表現と視点をまたいだ高品質で一貫した結果をもたらすことが示された。
プロジェクトページ: https://zju3dv.github.io/geneavatar/
関連論文リスト
- One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation [31.310769289315648]
本稿では,1ユーザあたり1枚または数枚の画像のみを利用した高品質なヘッドアバターを作成するための新しいアプローチを提案する。
我々は2407名の被験者から多視点の表情データセットから3次元アニマタブルなフォトリアリスティックヘッドアバターの生成モデルを学習した。
提案手法は,従来のアバター適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-19T07:48:29Z) - GPAvatar: Generalizable and Precise Head Avatar from Image(s) [71.555405205039]
GPAvatarは、1つの前方パスで1つまたは複数の画像から3Dヘッドアバターを再構築するフレームワークである。
提案手法は,忠実なアイデンティティ再構築,正確な表現制御,多視点一貫性を実現する。
論文 参考訳(メタデータ) (2024-01-18T18:56:34Z) - AvatarBooth: High-Quality and Customizable 3D Human Avatar Generation [14.062402203105712]
AvatarBoothはテキストプロンプトや特定の画像を使って高品質な3Dアバターを生成する新しい方法である。
我々の重要な貢献は、二重微調整拡散モデルを用いた正確なアバター生成制御である。
本稿では,3次元アバター生成の粗大な監視を容易にするマルチレゾリューションレンダリング戦略を提案する。
論文 参考訳(メタデータ) (2023-06-16T14:18:51Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
本研究では,1枚の画像から3次元頭部アバターを再構成し,アニメイトする手法を提案する。
本研究では,一視点画像に基づく識別不能な人物を一般化するだけでなく,顔領域内外における特徴的詳細を捉えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T22:33:09Z) - AvatarStudio: Text-driven Editing of 3D Dynamic Human Head Avatars [84.85009267371218]
本研究では,動的なフルヘッドアバターの外観を編集するテキストベースのAvatarStudioを提案する。
提案手法は,ニューラルフィールド(NeRF)を用いて人間の頭部のダイナミックなパフォーマンスを捉え,テキスト・ツー・イメージ拡散モデルを用いてこの表現を編集する。
提案手法は,全頭部を標準空間で編集し,事前学習した変形ネットワークを介して残時間ステップに伝達する。
論文 参考訳(メタデータ) (2023-06-01T11:06:01Z) - DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via
Diffusion Models [55.71306021041785]
高品質な3Dアバターを作成するためのテキスト・アンド・シェイプ・ガイドフレームワークであるDreamAvatarについて紹介する。
SMPLモデルを利用して、生成のための形状とポーズのガイダンスを提供する。
また、全体とズームインした3Dヘッドから計算した損失を共同で最適化し、一般的なマルチフェイス「Janus」問題を緩和する。
論文 参考訳(メタデータ) (2023-04-03T12:11:51Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
モノクロビデオから暗黙の頭部アバターを学習するための新しい手法であるIMavatarを提案する。
従来の3DMMによるきめ細かい制御機構に着想を得て, 学習用ブレンドサップとスキンフィールドによる表現・ポーズ関連変形を表現した。
本手法は,最先端の手法と比較して,幾何性を改善し,より完全な表現空間をカバーできることを定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2021-12-14T15:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。