論文の概要: Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models
- arxiv url: http://arxiv.org/abs/2404.02234v1
- Date: Tue, 2 Apr 2024 18:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 19:28:46.515172
- Title: Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models
- Title(参考訳): 流体流動モデルにおける経験的摩擦計測のための3次元点雲を用いた深部ニューラルネットワーク
- Authors: Francisco Haces-Garcia, Vasileios Kotzamanis, Craig Glennie, Hanadi Rifai,
- Abstract要約: 摩擦係数 (FF) は洪水モデルにおける運動量損失を計算するために用いられる。
洪水モデルは、しばしばFFを推定するために代理観測(土地利用など)に依存し、不確実性をもたらす。
本研究では,実験室で訓練したDeep Neural Network (DNN) を用いてデータ拡張技術を用いて,Point Cloudデータに基づくManningのnの測定を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Friction is one of the cruxes of hydrodynamic modeling; flood conditions are highly sensitive to the Friction Factors (FFs) used to calculate momentum losses. However, empirical FFs are challenging to measure because they require laboratory experiments. Flood models often rely on surrogate observations (such as land use) to estimate FFs, introducing uncertainty. This research presents a laboratory-trained Deep Neural Network (DNN), trained using flume experiments with data augmentation techniques, to measure Manning's n based on Point Cloud data. The DNN was deployed on real-world lidar Point Clouds to directly measure Manning's n under regulatory and extreme storm events, showing improved prediction capabilities in both 1D and 2D hydrodynamic models. For 1D models, the lidar values decreased differences with regulatory models for in-channel water depth when compared to land cover values. For 1D/2D coupled models, the lidar values produced better agreement with flood extents measured from airborne imagery, while better matching flood insurance claim data for Hurricane Harvey. In both 1D and 1D/2D coupled models, lidar resulted in better agreement with validation gauges. For these reasons, the lidar measurements of Manning's n were found to improve both regulatory models and forecasts for extreme storm events, while simultaneously providing a pathway to standardize the measurement of FFs. Changing FFs significantly affected fluvial and pluvial flood models, while surge flooding was generally unaffected. Downstream flow conditions were found to change the importance of FFs to fluvial models, advancing the literature of friction in flood models. This research introduces a reliable, repeatable, and readily-accessible avenue to measure high-resolution FFs based on 3D point clouds, improving flood prediction, and removing uncertainty from hydrodynamic modeling.
- Abstract(参考訳): 洪水条件は、運動量損失を計算するために使われる摩擦係数(FF)に非常に敏感である。
しかし、実験室実験を必要とするため、実験的なFFは測定が難しい。
洪水モデルは、しばしばFFを推定するために代理観測(土地利用など)に依存し、不確実性をもたらす。
本研究では,実験室で訓練したDeep Neural Network (DNN) を用いて,データ拡張技術を用いたフラム実験を行い,Point Cloudデータに基づくManningのnの測定を行った。
DNNは現実のライダー・ポイント・クラウドに展開され、規制および極端な嵐のイベント下でマニングのnを直接測定し、1Dと2Dの流体力学モデルの両方で予測能力が改善された。
1Dモデルの場合,ライダー値は,陸地被覆値と比較して流路内水深の調節モデルとの差が小さくなった。
1D/2D連成モデルでは、ライダー値が空中画像から計測された洪水範囲とよりよく一致し、ハリケーン・ハーベイの洪水保険請求データとよく一致した。
1Dモデルと1D/2Dモデルの両方で、ライダーは検証ゲージとよりよく一致した。
これらの理由から、マニングのnのライダー測定は、極度の嵐発生の規制モデルと予測の両方を改善し、同時にFFの測定を標準化する経路を提供した。
FFの変化はフラビアルとプルビアルの洪水モデルに大きく影響したが、洪水の洪水は概して影響を受けなかった。
下流流条件は, フラビアルモデルに対するFFsの重要性を変化させ, 洪水モデルにおける摩擦の文献化を推し進めた。
本研究は,3次元点雲に基づく高分解能FFの測定,洪水予測の改善,流体力学モデルからの不確かさの除去を目的として,信頼性,繰り返し,かつ容易に到達可能な経路を提案する。
関連論文リスト
- TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
本研究は,降雨の基盤となる物理的発生機構を十分に考慮した,新しい深層学習型降雨発生器を提案する。
その意義は、発電機が予想される雨をシミュレートするために雨の本質的な要素を精巧に設計するだけでなく、複雑で多様な雨のイメージに微妙に適応することにある。
提案した雨発生器が発生した雨は, 高品質であるだけでなく, 排水作業や下流作業にも有効であることを示す。
論文 参考訳(メタデータ) (2024-03-15T03:27:39Z) - MaxFloodCast: Ensemble Machine Learning Model for Predicting Peak
Inundation Depth And Decoding Influencing Features [0.8497188292342053]
本研究は、ハリス郡の物理に基づく流体力学シミュレーションに基づいて訓練された機械学習モデルMaxFloodCastを実証する。
MaxFloodCastは、効率的かつ解釈可能な浸水深度予測を提供する。
論文 参考訳(メタデータ) (2023-08-11T16:58:57Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - A comparison of machine learning surrogate models of street-scale
flooding in Norfolk, Virginia [0.0]
バージニア州ノーフォークを例に挙げた低地の海岸都市は、降雨と潮によって引き起こされる道路洪水の課題に直面している。
高忠実で物理に基づくシミュレーションは、都市多重洪水の正確な予測を提供するが、その計算複雑性はリアルタイムアプリケーションには適さない。
本研究では,ランダムフォレストアルゴリズムに基づく代理モデルと,Long Short-Term Memory (LSTM) と Gated Recurrent Unit (GRU) の2つのディープラーニングモデルを比較した。
論文 参考訳(メタデータ) (2023-07-26T13:24:01Z) - Deep Learning Models for Flood Predictions in South Florida [0.0]
本研究では,複数のディープラーニングモデル(DL)をサロゲートモデルとして使用して,水ステージを高速に予測する。
DLモデルの性能は、極端な降水条件下であっても物理モデルに匹敵する。
今後の水ステージを予測するため,我々のDLモデルは,近年の河川水系の測定値を用いている。
論文 参考訳(メタデータ) (2023-06-28T04:15:01Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
本研究では,拡散モデルに基づく最初の実世界の画像デライニングパラダイムであるRainDiffを提案する。
安定的で非敵対的なサイクル一貫性のあるアーキテクチャを導入し、トレーニングをエンドツーエンドで行えます。
また,複数の降雨の先行学習によって条件付けられた拡散生成過程を通じて,所望の出力を洗練する劣化条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-01-23T13:34:01Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
本稿では,降雨層に適合する動的降雨発生器を用いた半教師付きビデオデレーシング手法を提案する。
具体的には、1つのエミッションモデルと1つのトランジションモデルから成り、空間的物理的構造と時系列の雨の連続的な変化を同時にエンコードする。
ラベル付き合成およびラベルなしの実データのために、それらの基礎となる共通知識を十分に活用するために、様々な先行フォーマットが設計されている。
論文 参考訳(メタデータ) (2021-03-14T14:28:57Z) - A Hybrid Deep Learning Model for Predictive Flood Warning and Situation
Awareness using Channel Network Sensors Data [0.965964228590342]
この調査ではテキサス州ハリス郡をテストベッドとし、3つの歴史的な洪水からチャネルセンサーのデータを得た。
このモデルは、2019年のヒューストンのイメルダ洪水を予測するためにテストされ、その結果は経験的な洪水とよく一致している。
論文 参考訳(メタデータ) (2020-06-15T17:25:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。