Improved model-free bounds for multi-asset options using option-implied information and deep learning
- URL: http://arxiv.org/abs/2404.02343v1
- Date: Tue, 2 Apr 2024 22:37:22 GMT
- Title: Improved model-free bounds for multi-asset options using option-implied information and deep learning
- Authors: Evangelia Dragazi, Shuaiqiang Liu, Antonis Papapantoleon,
- Abstract summary: We consider the computation of model-free bounds for multi-asset options in a setting that combines dependence uncertainty with additional information on the dependence structure.
We provide a fundamental theorem of asset pricing in this setting, as well as a superhedging duality that allows to transform the problem over probability measures.
The latter is solved using a penalization approach combined with a deep learning approximation using artificial neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the computation of model-free bounds for multi-asset options in a setting that combines dependence uncertainty with additional information on the dependence structure. More specifically, we consider the setting where the marginal distributions are known and partial information, in the form of known prices for multi-asset options, is also available in the market. We provide a fundamental theorem of asset pricing in this setting, as well as a superhedging duality that allows to transform the maximization problem over probability measures in a more tractable minimization problem over trading strategies. The latter is solved using a penalization approach combined with a deep learning approximation using artificial neural networks. The numerical method is fast and the computational time scales linearly with respect to the number of traded assets. We finally examine the significance of various pieces of additional information. Empirical evidence suggests that "relevant" information, i.e. prices of derivatives with the same payoff structure as the target payoff, are more useful that other information, and should be prioritized in view of the trade-off between accuracy and computational efficiency.
Related papers
- Optimal Classification under Performative Distribution Shift [13.508249764979075]
We propose a novel view in which performative effects are modelled as push-forward measures.
We prove the convexity of the performative risk under a new set of assumptions.
We also establish a connection with adversarially robust classification by reformulating the minimization of the performative risk as a min-max variational problem.
arXiv Detail & Related papers (2024-11-04T12:20:13Z) - Minimax and Communication-Efficient Distributed Best Subset Selection with Oracle Property [0.358439716487063]
The explosion of large-scale data has outstripped the processing capabilities of single-machine systems.
Traditional approaches to distributed inference often struggle with achieving true sparsity in high-dimensional datasets.
We propose a novel, two-stage, distributed best subset selection algorithm to address these issues.
arXiv Detail & Related papers (2024-08-30T13:22:08Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - An Offline Learning Approach to Propagator Models [3.1755820123640612]
We consider an offline learning problem for an agent who first estimates an unknown price impact kernel from a static dataset.
We propose a novel approach for a nonparametric estimation of the propagator from a dataset containing correlated price trajectories, trading signals and metaorders.
We show that a trader who tries to minimise her execution costs by using a greedy strategy purely based on the estimated propagator will encounter suboptimality.
arXiv Detail & Related papers (2023-09-06T13:36:43Z) - Reinforcement Learning for Financial Index Tracking [2.048226951354646]
We propose the first discrete-time infinite-horizon dynamic formulation of the financial index tracking problem under both return-based tracking error and value-based tracking error.
The proposed method outperforms a benchmark method in terms of tracking accuracy and has the potential for earning extra profit through cash withdraw strategy.
arXiv Detail & Related papers (2023-08-05T08:34:52Z) - STEERING: Stein Information Directed Exploration for Model-Based
Reinforcement Learning [111.75423966239092]
We propose an exploration incentive in terms of the integral probability metric (IPM) between a current estimate of the transition model and the unknown optimal.
Based on KSD, we develop a novel algorithm algo: textbfSTEin information dirtextbfEcted exploration for model-based textbfReinforcement LearntextbfING.
arXiv Detail & Related papers (2023-01-28T00:49:28Z) - Quantization for decentralized learning under subspace constraints [61.59416703323886]
We consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints.
We propose and study an adaptive decentralized strategy where the agents employ differential randomized quantizers to compress their estimates.
The analysis shows that, under some general conditions on the quantization noise, the strategy is stable both in terms of mean-square error and average bit rate.
arXiv Detail & Related papers (2022-09-16T09:38:38Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
Many machine learning applications involve learning representations that achieve two competing goals.
Minimax game-theoretic formulation represents a fundamental tradeoff between accuracy and invariance.
We provide an information-theoretic analysis of this general and important problem under both classification and regression settings.
arXiv Detail & Related papers (2020-12-19T15:24:04Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation.
When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient.
arXiv Detail & Related papers (2020-11-08T16:48:02Z) - Value of Information Analysis via Active Learning and Knowledge Sharing
in Error-Controlled Adaptive Kriging [7.148732567427574]
This paper proposes the first surrogate-based framework for value of information (VoI) analysis.
It affords sharing equality-type information from observations among surrogate models to update likelihoods of multiple events of interest.
The proposed VoI analysis framework is applied for an optimal decision-making problem involving load testing of a truss bridge.
arXiv Detail & Related papers (2020-02-06T16:58:27Z) - On the Difference Between the Information Bottleneck and the Deep
Information Bottleneck [81.89141311906552]
We revisit the Deep Variational Information Bottleneck and the assumptions needed for its derivation.
We show how to circumvent this limitation by optimising a lower bound for $I(T;Y)$ for which only the latter Markov chain has to be satisfied.
arXiv Detail & Related papers (2019-12-31T18:31:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.