論文の概要: Effective Malware Detection for Embedded Computing Systems with Limited Exposure
- arxiv url: http://arxiv.org/abs/2404.02344v1
- Date: Tue, 2 Apr 2024 22:37:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 19:09:09.808695
- Title: Effective Malware Detection for Embedded Computing Systems with Limited Exposure
- Title(参考訳): 限られた露光量を有する組込み計算機システムに対する効果的なマルウェア検出
- Authors: Sreenitha Kasarapu, Sanket Shukla, Rakibul Hassan, Avesta Sasan, Houman Homayoun, Sai Manoj Pudukotai Dinakarrao,
- Abstract要約: そこで本研究では,限定的なマルウェアの複数の変異サンプルを生成するコード認識データ生成手法を提案する。
損失最小化は、生成したサンプルが限られたマルウェアを忠実に模倣し、非現実的なサンプルを緩和することを保証する。
提案手法は,最先端技術により得られた精度の約3倍のマルウェアを検知し,90%の精度で検出する。
- 参考スコア(独自算出の注目度): 4.005387996499278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the pivotal security threats for the embedded computing systems is malicious software a.k.a malware. With efficiency and efficacy, Machine Learning (ML) has been widely adopted for malware detection in recent times. Despite being efficient, the existing techniques require a tremendous number of benign and malware samples for training and modeling an efficient malware detector. Furthermore, such constraints limit the detection of emerging malware samples due to the lack of sufficient malware samples required for efficient training. To address such concerns, we introduce a code-aware data generation technique that generates multiple mutated samples of the limitedly seen malware by the devices. Loss minimization ensures that the generated samples closely mimic the limitedly seen malware and mitigate the impractical samples. Such developed malware is further incorporated into the training set to formulate the model that can efficiently detect the emerging malware despite having limited exposure. The experimental results demonstrates that the proposed technique achieves an accuracy of 90% in detecting limitedly seen malware, which is approximately 3x more than the accuracy attained by state-of-the-art techniques.
- Abstract(参考訳): 組み込みコンピューティングシステムにとって重要なセキュリティ上の脅威の1つは、悪意のあるソフトウェア、すなわちマルウェアである。
近年,機械学習(ML)がマルウェア検出に広く採用されている。
効率的であるにもかかわらず、既存のテクニックでは、効率的なマルウェア検知器を訓練し、モデル化するために、膨大な数の良心とマルウェアサンプルが必要である。
さらに、このような制約は、効率的なトレーニングに必要な十分なマルウェアサンプルが不足しているため、出現するマルウェアサンプルの検出を制限する。
このような問題に対処するため,我々は,限定的なマルウェアの複数の変異サンプルを生成するコード認識データ生成手法を導入する。
損失最小化は、生成したサンプルが限られたマルウェアを忠実に模倣し、非現実的なサンプルを緩和することを保証する。
このようなマルウェアをトレーニングセットに組み込んで、露出が限られているにもかかわらず、出現するマルウェアを効率的に検出できるモデルを定式化する。
実験により,本手法は,最先端技術により得られた精度よりも約3倍の精度で,限定的なマルウェアの検出において90%の精度が得られることが示された。
関連論文リスト
- Bayesian Learned Models Can Detect Adversarial Malware For Free [28.498994871579985]
対数訓練は有効な方法であるが、大規模データセットにスケールアップするには計算コストがかかる。
特にベイズ式はモデルパラメータの分布を捉えることができ、モデル性能を犠牲にすることなく不確実性を定量化することができる。
ベイズ学習法で不確実性を定量化することで、敵のマルウェアを防御できることがわかった。
論文 参考訳(メタデータ) (2024-03-27T07:16:48Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - FGAM:Fast Adversarial Malware Generation Method Based on Gradient Sign [16.16005518623829]
敵対的攻撃は、敵対的サンプルを生成することによって、ディープラーニングモデルを欺くことである。
本稿では,FGAM(Fast Generate Adversarial Malware)を提案する。
FGAMが生成したマルウェア偽装モデルの成功率は,既存手法と比較して約84%増加することが実験的に検証された。
論文 参考訳(メタデータ) (2023-05-22T06:58:34Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - PAD: Towards Principled Adversarial Malware Detection Against Evasion
Attacks [17.783849474913726]
本稿では,PAD(Principled Adversarial Malware Detection)と呼ばれる新しい対向学習フレームワークを提案する。
PADは、マルウェア検出装置を敵から守るために、分布的に離散的な摂動を定量化する学習可能な凸測定を基礎としている。
PADは、83.45%以上の精度で、27の回避攻撃に対するMLベースのマルウェア検出を強化できる。
VirusTotalの多くのアンチマルウェアスキャナーと、現実的な敵のマルウェアとを一致または性能で比較する。
論文 参考訳(メタデータ) (2023-02-22T12:24:49Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
既存のマルウェア検出方法は、トレーニングデータセットに難読化されたマルウェアサンプルが存在する場合、異なるマルウェアファミリーを正しく分類できない。
そこで我々は,このような制御フロー難読化技術に対して耐性を持つ,タスク対応の複数ショット学習型サイメスニューラルネットワークを提案する。
提案手法は,同一のマルウェアファミリーに属するマルウェアサンプルを正しく分類し,ユニークなマルウェアシグネチャの認識に極めて有効である。
論文 参考訳(メタデータ) (2021-10-26T04:44:13Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
本研究は,様々な表現と学習技術を利用した最先端のマルウェア検出手法を体系的に検討する。
本研究では, 剥ぎ取りやパディングなどの機能保存操作によるソフトウェア変異が, 検出精度を著しく低下させることを示した。
論文 参考訳(メタデータ) (2021-08-30T16:54:07Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。