論文の概要: Backdoor Attack on Multilingual Machine Translation
- arxiv url: http://arxiv.org/abs/2404.02393v1
- Date: Wed, 3 Apr 2024 01:32:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:59:11.089762
- Title: Backdoor Attack on Multilingual Machine Translation
- Title(参考訳): 多言語機械翻訳におけるバックドアアタック
- Authors: Jun Wang, Qiongkai Xu, Xuanli He, Benjamin I. P. Rubinstein, Trevor Cohn,
- Abstract要約: マルチリンガル機械翻訳(MNMT)システムにはセキュリティ脆弱性がある。
攻撃者は、他の言語で悪意のある翻訳を引き起こすために、有害なデータを低リソースの言語ペアに注入する。
この種の攻撃は、低リソース設定に固有の言語の攻撃面が大きいことを考えると、特に懸念される。
- 参考スコア(独自算出の注目度): 53.28390057407576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While multilingual machine translation (MNMT) systems hold substantial promise, they also have security vulnerabilities. Our research highlights that MNMT systems can be susceptible to a particularly devious style of backdoor attack, whereby an attacker injects poisoned data into a low-resource language pair to cause malicious translations in other languages, including high-resource languages. Our experimental results reveal that injecting less than 0.01% poisoned data into a low-resource language pair can achieve an average 20% attack success rate in attacking high-resource language pairs. This type of attack is of particular concern, given the larger attack surface of languages inherent to low-resource settings. Our aim is to bring attention to these vulnerabilities within MNMT systems with the hope of encouraging the community to address security concerns in machine translation, especially in the context of low-resource languages.
- Abstract(参考訳): マルチリンガル機械翻訳(MNMT)システムには大きな保証があるが、セキュリティ上の脆弱性もある。
我々の研究は、MNMTシステムは特に悪質なバックドア攻撃の影響を受ける可能性があることを強調し、攻撃者は汚染されたデータを低リソースの言語ペアに注入し、高リソースの言語を含む他の言語で悪意のある翻訳を引き起こす。
実験の結果,0.01%未満の有毒データを低リソース言語ペアに注入すると,高リソース言語ペアを攻撃した場合の平均20%の攻撃成功率が得られることがわかった。
この種の攻撃は、低リソース設定に固有の言語の攻撃面が大きいことを考えると、特に懸念される。
我々の目標は、MNMTシステム内のこれらの脆弱性に注意を向けることであり、特に低リソース言語の文脈において、機械翻訳におけるセキュリティ問題に対処するようコミュニティに促すことである。
関連論文リスト
- Against All Odds: Overcoming Typology, Script, and Language Confusion in Multilingual Embedding Inversion Attacks [3.2297018268473665]
大規模言語モデル(LLM)は、敵、バックドア、侵入攻撃などの侵入を通じて、サイバー攻撃者による悪意ある影響を受けやすい。
本研究では,20言語にまたがる言語間およびクロススクリプト・インバージョン・インバージョン・アタックの文脈における多言語LDMの安全性について検討する。
アラビア文字とキリル文字で書かれた言語は、インド・アーリア語族の言語と同様に、特にインバージョンに弱いことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T16:16:34Z) - TuBA: Cross-Lingual Transferability of Backdoor Attacks in LLMs with Instruction Tuning [63.481446315733145]
多言語大言語モデル(LLM)に対する言語間バックドア攻撃は未調査である。
本研究は, 教育指導データが有毒でない言語に対して, 教育指導データの有毒化がアウトプットに与える影響について検討した。
本手法は,mT5 や GPT-4o などのモデルにおいて,高い攻撃成功率を示し,12言語中7言語以上で90%以上を突破した。
論文 参考訳(メタデータ) (2024-04-30T14:43:57Z) - Text Embedding Inversion Security for Multilingual Language Models [2.790855523145802]
研究は、基礎となるモデルに関する知識がなくても、埋め込みからテキストを再構築できることを示している。
本研究は,単言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語・多言語
論文 参考訳(メタデータ) (2024-01-22T18:34:42Z) - Vicinal Risk Minimization for Few-Shot Cross-lingual Transfer in Abusive
Language Detection [19.399281609371258]
高リソースから中低リソース言語への言語間変換学習は、励みのよい結果を示している。
我々は、言語間乱用言語検出を改善するために、ドメイン適応のためのデータ拡張と継続事前学習を利用する。
論文 参考訳(メタデータ) (2023-11-03T16:51:07Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
本研究では,大規模言語モデル(LLM)における多言語ジェイルブレイク問題の存在を明らかにする。
我々は、意図しないシナリオと意図的なシナリオの2つを考えます。
安全な微調整のための多言語学習データを自動的に生成する新しいtextscSelf-Defense フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-10T09:44:06Z) - Low-Resource Languages Jailbreak GPT-4 [19.97929171158234]
我々の研究は、AIの安全性トレーニングと大規模言語モデル(LLM)のリピートという、言語横断的な脆弱性を明らかにします。
AdvBenchmarkでは、GPT-4は安全でない翻訳された入力に関わり、ユーザを有害な目標の79%に導く実行可能なアイテムを提供する。
他のハイ/ミッドリソース言語は攻撃成功率を著しく低くしているため、言語間の脆弱性は主に低リソース言語に適用される。
論文 参考訳(メタデータ) (2023-10-03T21:30:56Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
負の干渉を軽減するために,HLT-MT(High-Resource Language-specific Training)を用いた多言語翻訳モデルを提案する。
具体的には、まずマルチ言語モデルを高リソースペアでトレーニングし、デコーダの上部にある言語固有のモジュールを選択する。
HLT-MTは、高リソース言語から低リソース言語への知識伝達のために、利用可能なすべてのコーパスでさらに訓練されている。
論文 参考訳(メタデータ) (2022-07-11T14:33:13Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
COLDatasetは、37kの注釈付き文を持つ中国の攻撃的言語データセットである。
また、人気のある中国語モデルの出力攻撃性を研究するために、textscCOLDetectorを提案する。
我々の資源と分析は、中国のオンラインコミュニティを解毒し、生成言語モデルの安全性を評価することを目的としている。
論文 参考訳(メタデータ) (2022-01-16T11:47:23Z) - Putting words into the system's mouth: A targeted attack on neural
machine translation using monolingual data poisoning [50.67997309717586]
本稿では、悪意のある敵が、バックトランスレーションを用いて訓練されたシステムのトレーニングセットに、モノリンガルテキストの少量の有毒サンプルを挿入する中毒攻撃を提案する。
このサンプルは、パドリング誤報のような特定の標的となる翻訳行動を引き起こすように設計されている。
有毒な例を作るための2つの方法を示し、トレーニングセットの0.02%にしか満たない少数の事例しか、攻撃を成功させるには不十分であることを示した。
論文 参考訳(メタデータ) (2021-07-12T08:07:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。