Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks
- URL: http://arxiv.org/abs/2404.02464v1
- Date: Wed, 3 Apr 2024 05:07:01 GMT
- Title: Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks
- Authors: Shruthi Ravikumar, Margaret Hamilton, Charles Thevathayan, Maria Spichkova, Kashif Ali, Gayan Wijesinghe,
- Abstract summary: This paper describes instruments and the machine learning models used for validating them.
We have used the data collected in an introductory programming course in the penultimate week of the semester.
Preliminary research suggests ART type instruments can be combined with specific machine learning models to act as an effective learning trajectory.
- Score: 0.923607423080658
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many students in introductory programming courses fare poorly in the code writing tasks of the final summative assessment. Such tasks are designed to assess whether novices have developed the analytical skills to translate from the given problem domain to coding. In the past researchers have used instruments such as code-explain and found that the extent of cognitive depth reached in these tasks correlated well with code writing ability. However, the need for manual marking and personalized interviews used for identifying cognitive difficulties limited the study to a small group of stragglers. To extend this work to larger groups, we have devised several question types with varying cognitive demands collectively called Algorithmic Reasoning Tasks (ARTs), which do not require manual marking. These tasks require levels of reasoning which can define a learning trajectory. This paper describes these instruments and the machine learning models used for validating them. We have used the data collected in an introductory programming course in the penultimate week of the semester which required attempting ART type instruments and code writing. Our preliminary research suggests ART type instruments can be combined with specific machine learning models to act as an effective learning trajectory and early prediction of code-writing skills.
Related papers
- Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases [2.808331566391181]
We propose a novel tool, Code, to address these issues.
Our study highlights a significant gap in current tools and methodologies.
Our formative study demonstrates how effectively the tool reduces the time developers spend navigating documentation.
arXiv Detail & Related papers (2024-05-10T06:58:31Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - Supporting Qualitative Analysis with Large Language Models: Combining
Codebook with GPT-3 for Deductive Coding [45.5690960017762]
This study explores the use of large language models (LLMs) in supporting deductive coding.
Instead of training task-specific models, a pre-trained LLM could be used directly for various tasks without fine-tuning through prompt learning.
Using a curiosity-driven questions coding task as a case study, we found, by combining GPT-3 with expert-drafted codebooks, our proposed approach achieved fair to substantial agreements with expert-coded results.
arXiv Detail & Related papers (2023-04-17T04:52:43Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Explainable AI for Pre-Trained Code Models: What Do They Learn? When
They Do Not Work? [4.573310303307945]
We study two recent large language models (LLMs) for code on a set of software engineering downstream tasks.
We identify what CodeBERT and GraphCodeBERT learn (put the highest attention on, in terms of source code token types) on these tasks.
We show some of the common patterns when the model does not work as expected and suggest recommendations.
arXiv Detail & Related papers (2022-11-23T10:07:20Z) - AANG: Automating Auxiliary Learning [110.36191309793135]
We present an approach for automatically generating a suite of auxiliary objectives.
We achieve this by deconstructing existing objectives within a novel unified taxonomy, identifying connections between them, and generating new ones based on the uncovered structure.
This leads us to a principled and efficient algorithm for searching the space of generated objectives to find those most useful to a specified end-task.
arXiv Detail & Related papers (2022-05-27T16:32:28Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Toward Educator-focused Automated Scoring Systems for Reading and
Writing [0.0]
This paper addresses the challenges of data and label availability, authentic and extended writing, domain scoring, prompt and source variety, and transfer learning.
It employs techniques that preserve essay length as an important feature without increasing model training costs.
arXiv Detail & Related papers (2021-12-22T15:44:30Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Curriculum Learning: A Survey [65.31516318260759]
Curriculum learning strategies have been successfully employed in all areas of machine learning.
We construct a taxonomy of curriculum learning approaches by hand, considering various classification criteria.
We build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm.
arXiv Detail & Related papers (2021-01-25T20:08:32Z) - Towards Improved Model Design for Authorship Identification: A Survey on
Writing Style Understanding [30.642840676899734]
Authorship identification tasks rely heavily on linguistic styles.
Traditional machine learning methods based on handcrafted feature sets are already approaching their performance limits.
We describe outstanding methods in style-related tasks in general and analyze how they are used in combination in the top-performing models.
arXiv Detail & Related papers (2020-09-30T05:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.