論文の概要: HENet: Hybrid Encoding for End-to-end Multi-task 3D Perception from Multi-view Cameras
- arxiv url: http://arxiv.org/abs/2404.02517v1
- Date: Wed, 3 Apr 2024 07:10:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:19:59.120307
- Title: HENet: Hybrid Encoding for End-to-end Multi-task 3D Perception from Multi-view Cameras
- Title(参考訳): HENet:マルチビューカメラによるエンドツーエンドマルチタスク3次元認識のためのハイブリッド符号化
- Authors: Zhongyu Xia, ZhiWei Lin, Xinhao Wang, Yongtao Wang, Yun Xing, Shengxiang Qi, Nan Dong, Ming-Hsuan Yang,
- Abstract要約: 本稿では,マルチタスク3次元知覚のためのHENetというエンドツーエンドフレームワークを提案する。
具体的には,短期フレーム用大画像エンコーダと長期フレーム用小画像エンコーダを用いたハイブリッド画像エンコーダを提案する。
各認識タスクの特徴により、異なるグリッドサイズのBEV機能、独立したBEVエンコーダ、タスクデコーダを異なるタスクに活用する。
- 参考スコア(独自算出の注目度): 45.739224968302565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Three-dimensional perception from multi-view cameras is a crucial component in autonomous driving systems, which involves multiple tasks like 3D object detection and bird's-eye-view (BEV) semantic segmentation. To improve perception precision, large image encoders, high-resolution images, and long-term temporal inputs have been adopted in recent 3D perception models, bringing remarkable performance gains. However, these techniques are often incompatible in training and inference scenarios due to computational resource constraints. Besides, modern autonomous driving systems prefer to adopt an end-to-end framework for multi-task 3D perception, which can simplify the overall system architecture and reduce the implementation complexity. However, conflict between tasks often arises when optimizing multiple tasks jointly within an end-to-end 3D perception model. To alleviate these issues, we present an end-to-end framework named HENet for multi-task 3D perception in this paper. Specifically, we propose a hybrid image encoding network, using a large image encoder for short-term frames and a small image encoder for long-term temporal frames. Then, we introduce a temporal feature integration module based on the attention mechanism to fuse the features of different frames extracted by the two aforementioned hybrid image encoders. Finally, according to the characteristics of each perception task, we utilize BEV features of different grid sizes, independent BEV encoders, and task decoders for different tasks. Experimental results show that HENet achieves state-of-the-art end-to-end multi-task 3D perception results on the nuScenes benchmark, including 3D object detection and BEV semantic segmentation. The source code and models will be released at https://github.com/VDIGPKU/HENet.
- Abstract(参考訳): 多視点カメラからの3次元認識は、自律運転システムにおいて重要な要素であり、3Dオブジェクトの検出や鳥の目視(BEV)セマンティックセグメンテーションといった複数のタスクを含む。
近年の3次元知覚モデルでは,大きな画像エンコーダ,高解像度画像,長期時間入力が採用されており,性能が著しく向上している。
しかし、これらの手法は、計算資源の制約のため、トレーニングや推論のシナリオでは互換性がないことが多い。
さらに、現代の自律運転システムは、システムアーキテクチャ全体を単純化し、実装の複雑さを低減することができるマルチタスク3D知覚のためのエンドツーエンドフレームワークを採用することを好んでいる。
しかし、複数のタスクをエンドツーエンドの3D知覚モデル内で協調的に最適化する場合、タスク間の衝突が発生することが多い。
本稿では,これらの問題を緩和するために,マルチタスク3次元認識のためのHENetというエンドツーエンドフレームワークを提案する。
具体的には,短期フレーム用大画像エンコーダと長期フレーム用小画像エンコーダを用いたハイブリッド画像エンコーダを提案する。
次に,2つのハイブリット画像エンコーダから抽出した異なるフレームの特徴を融合する,アテンション機構に基づく時間的特徴統合モジュールを提案する。
最後に、各知覚タスクの特徴に基づき、異なるグリッドサイズのBEV機能、独立したBEVエンコーダ、タスクデコーダを異なるタスクに活用する。
実験の結果,HENetは3Dオブジェクト検出やBEVセマンティックセマンティックセグメンテーションを含む,最先端のマルチタスク3D知覚結果をnuScenesベンチマークで達成した。
ソースコードとモデルはhttps://github.com/VDIGPKU/HENet.comで公開される。
関連論文リスト
- UltimateDO: An Efficient Framework to Marry Occupancy Prediction with 3D Object Detection via Channel2height [2.975860548186652]
現代の自律運転システムでは、作業と3Dオブジェクト検出が標準的な2つのタスクである。
高速な3次元物体検出と占有予測(UltimateDO)を実現する手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T13:14:13Z) - FastOcc: Accelerating 3D Occupancy Prediction by Fusing the 2D
Bird's-Eye View and Perspective View [46.81548000021799]
自律運転において、3D占有率予測は、より包括的な3Dシーンの理解のために、ボクセル的なステータスとセマンティックラベルを出力する。
近年,ビュートランスフォーメーション技術,地味ラベル生成,精巧なネットワーク設計など,この課題のさまざまな側面を幅広く研究している。
FastOccと呼ばれる新しい手法が提案され、精度を維持しながらモデルを高速化する。
Occ3D-nuScenesベンチマークの実験は、FastOccが高速な推論速度を達成することを示した。
論文 参考訳(メタデータ) (2024-03-05T07:01:53Z) - LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content
Creation [51.19871052619077]
テキストプロンプトやシングルビュー画像から高解像度の3Dモデルを生成するための新しいフレームワークであるLarge Multi-View Gaussian Model (LGM)を紹介する。
我々は,5秒以内に3Dオブジェクトを生成する高速な速度を維持しながら,トレーニング解像度を512に向上し,高解像度な3Dコンテンツ生成を実現する。
論文 参考訳(メタデータ) (2024-02-07T17:57:03Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
本稿では,画像エンコーダから抽出した特徴を共有3D特徴空間に投影することで,複数のタスクをインタフェースする構造化3D認識正規化器を提案する。
提案手法はアーキテクチャ非依存であり,従来のマルチタスクバックボーンにプラグインすることで,性能を向上できることを示す。
論文 参考訳(メタデータ) (2023-10-02T08:49:56Z) - UniM$^2$AE: Multi-modal Masked Autoencoders with Unified 3D Representation for 3D Perception in Autonomous Driving [47.590099762244535]
Masked Autoencoders (MAE)は、強力な表現の学習において重要な役割を担い、様々な3D知覚タスクにおいて優れた結果をもたらす。
この研究は、自律運転における統一された表現空間に適したマルチモーダルのMasked Autoencodersに展開する。
画像に固有のセマンティクスとLiDAR点雲の幾何学的複雑さを複雑に結合するため,UniM$2$AEを提案する。
論文 参考訳(メタデータ) (2023-08-21T02:13:40Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
周囲のカメラで3Dオブジェクトを検出することは、自動運転にとって有望な方向だ。
マルチカメラオブジェクト検出のための簡易ベースラインであるSimMODを提案する。
我々は, nuScenes の3次元オブジェクト検出ベンチマークにおいて, SimMOD の有効性を示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-08-22T03:38:01Z) - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [105.96557764248846]
本稿では,汎用マルチタスクマルチセンサ融合フレームワークであるBEVFusionを紹介する。
共有鳥眼ビュー表示空間におけるマルチモーダル特徴を統一する。
3Dオブジェクト検出では1.3%高いmAPとNDS、BEVマップのセグメンテーションでは13.6%高いmIoU、コストは1.9倍である。
論文 参考訳(メタデータ) (2022-05-26T17:59:35Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
マルチカメラシステムに基づく3次元認識と予測のための統合フレームワークであるBEVerseを提案する。
マルチタスクBEVerseは3次元オブジェクト検出,セマンティックマップ構築,動き予測において単一タスク法より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T17:55:35Z) - A Novel Patch Convolutional Neural Network for View-based 3D Model
Retrieval [36.12906920608775]
ビューベース3次元モデル検索のための新しいパッチ畳み込みニューラルネットワーク(PCNN)を提案する。
提案したPCNNは, それぞれ93.67%, 96.23%と, 最先端のアプローチより優れている。
論文 参考訳(メタデータ) (2021-09-25T07:18:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。