Unbiased Learning to Rank Meets Reality: Lessons from Baidu's Large-Scale Search Dataset
- URL: http://arxiv.org/abs/2404.02543v3
- Date: Wed, 15 May 2024 14:04:20 GMT
- Title: Unbiased Learning to Rank Meets Reality: Lessons from Baidu's Large-Scale Search Dataset
- Authors: Philipp Hager, Romain Deffayet, Jean-Michel Renders, Onno Zoeter, Maarten de Rijke,
- Abstract summary: Unbiased learning-to-rank (ULTR) is a well-established framework for learning from user clicks.
We revisit and extend the available experiments on the Baidu-ULTR dataset.
We find that standard unbiased learning-to-rank techniques robustly improve click predictions but struggle to consistently improve ranking performance.
- Score: 48.708591046906896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unbiased learning-to-rank (ULTR) is a well-established framework for learning from user clicks, which are often biased by the ranker collecting the data. While theoretically justified and extensively tested in simulation, ULTR techniques lack empirical validation, especially on modern search engines. The Baidu-ULTR dataset released for the WSDM Cup 2023, collected from Baidu's search engine, offers a rare opportunity to assess the real-world performance of prominent ULTR techniques. Despite multiple submissions during the WSDM Cup 2023 and the subsequent NTCIR ULTRE-2 task, it remains unclear whether the observed improvements stem from applying ULTR or other learning techniques. In this work, we revisit and extend the available experiments on the Baidu-ULTR dataset. We find that standard unbiased learning-to-rank techniques robustly improve click predictions but struggle to consistently improve ranking performance, especially considering the stark differences obtained by choice of ranking loss and query-document features. Our experiments reveal that gains in click prediction do not necessarily translate to enhanced ranking performance on expert relevance annotations, implying that conclusions strongly depend on how success is measured in this benchmark.
Related papers
- Contextual Dual Learning Algorithm with Listwise Distillation for Unbiased Learning to Rank [26.69630281310365]
Unbiased Learning to Rank (ULTR) aims to leverage biased implicit user feedback (e.g., click) to optimize an unbiased ranking model.
We propose a Contextual Dual Learning Algorithm with Listwise Distillation (CDLA-LD) to address both position bias and contextual bias.
arXiv Detail & Related papers (2024-08-19T09:13:52Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
Recent research shows that pre-trained language models (PLMs) suffer from "prompt bias" in factual knowledge extraction.
This paper aims to improve the reliability of existing benchmarks by thoroughly investigating and mitigating prompt bias.
arXiv Detail & Related papers (2024-03-15T02:04:35Z) - TESSERACT: Eliminating Experimental Bias in Malware Classification
across Space and Time (Extended Version) [18.146377453918724]
Malware detectors often experience performance decay due to constantly evolving operating systems and attack methods.
This paper argues that commonly reported results are inflated due to two pervasive sources of experimental bias in the detection task.
arXiv Detail & Related papers (2024-02-02T12:27:32Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
Unbiased Learning to Rank(ULTR) algorithms are proposed to learn an unbiased ranking model with biased click data.
We propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, named BAL, to automatically find the user behavior model.
Experimental results on a real-world dataset verify the effectiveness of the BAL.
arXiv Detail & Related papers (2022-10-19T16:53:08Z) - A Large Scale Search Dataset for Unbiased Learning to Rank [51.97967284268577]
We introduce the Baidu-ULTR dataset for unbiased learning to rank.
It involves randomly sampled 1.2 billion searching sessions and 7,008 expert annotated queries.
It provides: (1) the original semantic feature and a pre-trained language model for easy usage; (2) sufficient display information such as position, displayed height, and displayed abstract; and (3) rich user feedback on search result pages (SERPs) like dwelling time.
arXiv Detail & Related papers (2022-07-07T02:37:25Z) - ULTRA: An Unbiased Learning To Rank Algorithm Toolbox [13.296248894004652]
In this paper, we describe the general framework of unbiased learning to rank (ULTR)
We also briefly describe the algorithms in ULTRA, detailed the structure, and pipeline of the toolbox.
Our toolbox is an important resource for researchers to conduct experiments on ULTR algorithms with different configurations as well as testing their own algorithms with the supported features.
arXiv Detail & Related papers (2021-08-11T07:26:59Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Handling Position Bias for Unbiased Learning to Rank in Hotels Search [0.951828574518325]
We will investigate the importance of properly handling the position bias in an online test environment in Tripadvisor Hotels search.
We propose an empirically effective method of handling the position bias that fully leverages the user action data.
The online A/B test results show that this method leads to an improved search ranking model.
arXiv Detail & Related papers (2020-02-28T03:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.