Contextual Dual Learning Algorithm with Listwise Distillation for Unbiased Learning to Rank
- URL: http://arxiv.org/abs/2408.09817v1
- Date: Mon, 19 Aug 2024 09:13:52 GMT
- Title: Contextual Dual Learning Algorithm with Listwise Distillation for Unbiased Learning to Rank
- Authors: Lulu Yu, Keping Bi, Shiyu Ni, Jiafeng Guo,
- Abstract summary: Unbiased Learning to Rank (ULTR) aims to leverage biased implicit user feedback (e.g., click) to optimize an unbiased ranking model.
We propose a Contextual Dual Learning Algorithm with Listwise Distillation (CDLA-LD) to address both position bias and contextual bias.
- Score: 26.69630281310365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unbiased Learning to Rank (ULTR) aims to leverage biased implicit user feedback (e.g., click) to optimize an unbiased ranking model. The effectiveness of the existing ULTR methods has primarily been validated on synthetic datasets. However, their performance on real-world click data remains unclear. Recently, Baidu released a large publicly available dataset of their web search logs. Subsequently, the NTCIR-17 ULTRE-2 task released a subset dataset extracted from it. We conduct experiments on commonly used or effective ULTR methods on this subset to determine whether they maintain their effectiveness. In this paper, we propose a Contextual Dual Learning Algorithm with Listwise Distillation (CDLA-LD) to simultaneously address both position bias and contextual bias. We utilize a listwise-input ranking model to obtain reconstructed feature vectors incorporating local contextual information and employ the Dual Learning Algorithm (DLA) method to jointly train this ranking model and a propensity model to address position bias. As this ranking model learns the interaction information within the documents list of the training set, to enhance the ranking model's generalization ability, we additionally train a pointwise-input ranking model to learn the listwise-input ranking model's capability for relevance judgment in a listwise manner. Extensive experiments and analysis confirm the effectiveness of our approach.
Related papers
- Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z) - A Large Scale Search Dataset for Unbiased Learning to Rank [51.97967284268577]
We introduce the Baidu-ULTR dataset for unbiased learning to rank.
It involves randomly sampled 1.2 billion searching sessions and 7,008 expert annotated queries.
It provides: (1) the original semantic feature and a pre-trained language model for easy usage; (2) sufficient display information such as position, displayed height, and displayed abstract; and (3) rich user feedback on search result pages (SERPs) like dwelling time.
arXiv Detail & Related papers (2022-07-07T02:37:25Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Deep Indexed Active Learning for Matching Heterogeneous Entity
Representations [20.15233789156307]
We propose DIAL, a scalable active learning approach that jointly learns embeddings to maximize recall for blocking and accuracy for matching blocked pairs.
Experiments on five benchmark datasets and a multilingual record matching dataset show the effectiveness of our approach in terms of precision, recall and running time.
arXiv Detail & Related papers (2021-04-08T18:00:19Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
Collaborative Filtering (CF) based recommendation methods have been widely studied.
We propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet)
In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network.
arXiv Detail & Related papers (2021-03-10T14:59:23Z) - Analysis of Multivariate Scoring Functions for Automatic Unbiased
Learning to Rank [14.827143632277274]
AutoULTR algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice.
Recent advances in context-aware learning-to-rank models have shown that multivariate scoring functions, which read multiple documents together and predict their ranking scores jointly, are more powerful than uni-variate ranking functions in ranking tasks with human-annotated relevance labels.
Our experiments with synthetic clicks on two large-scale benchmark datasets show that AutoULTR models with permutation-invariant multivariate scoring functions significantly outperform
arXiv Detail & Related papers (2020-08-20T16:31:59Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z) - Handling Position Bias for Unbiased Learning to Rank in Hotels Search [0.951828574518325]
We will investigate the importance of properly handling the position bias in an online test environment in Tripadvisor Hotels search.
We propose an empirically effective method of handling the position bias that fully leverages the user action data.
The online A/B test results show that this method leads to an improved search ranking model.
arXiv Detail & Related papers (2020-02-28T03:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.