Grid-Mapping Pseudo-Count Constraint for Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2404.02545v1
- Date: Wed, 3 Apr 2024 08:03:27 GMT
- Title: Grid-Mapping Pseudo-Count Constraint for Offline Reinforcement Learning
- Authors: Yi Shen, Hanyan Huang, Shan Xie,
- Abstract summary: We propose a novel count-based method for continuous domains, called Grid-Mapping Pseudo-Count method(GPC)
GPC has better performance and less computational cost compared to other algorithms.
- Score: 1.7886826917274343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning learns from a static dataset without interacting with the environment, which ensures security and thus owns a good prospect of application. However, directly applying naive reinforcement learning methods usually fails in an offline environment due to function approximation errors caused by out-of-distribution(OOD) actions. To solve this problem, existing algorithms mainly penalize the Q-value of OOD actions, the quality of whose constraints also matter. Imprecise constraints may lead to suboptimal solutions, while precise constraints require significant computational costs. In this paper, we propose a novel count-based method for continuous domains, called Grid-Mapping Pseudo-Count method(GPC), to penalize the Q-value appropriately and reduce the computational cost. The proposed method maps the state and action space to discrete space and constrains their Q-values through the pseudo-count. It is theoretically proved that only a few conditions are needed to obtain accurate uncertainty constraints in the proposed method. Moreover, we develop a Grid-Mapping Pseudo-Count Soft Actor-Critic(GPC-SAC) algorithm using GPC under the Soft Actor-Critic(SAC) framework to demonstrate the effectiveness of GPC. The experimental results on D4RL benchmark datasets show that GPC-SAC has better performance and less computational cost compared to other algorithms.
Related papers
- Strategically Conservative Q-Learning [89.17906766703763]
offline reinforcement learning (RL) is a compelling paradigm to extend RL's practical utility.
The major difficulty in offline RL is mitigating the impact of approximation errors when encountering out-of-distribution (OOD) actions.
We propose a novel framework called Strategically Conservative Q-Learning (SCQ) that distinguishes between OOD data that is easy and hard to estimate.
arXiv Detail & Related papers (2024-06-06T22:09:46Z) - Solving Non-Rectangular Reward-Robust MDPs via Frequency Regularization [39.740287682191884]
In robust Markov decision processes (RMDPs) it is assumed that the reward and the transition dynamics lie in a given uncertainty set.
This so-called rectangularity condition is solely motivated by computational concerns.
We introduce a policy-gradient method and prove its convergence.
arXiv Detail & Related papers (2023-09-03T07:34:26Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - $K$-Nearest-Neighbor Resampling for Off-Policy Evaluation in Stochastic
Control [0.6906005491572401]
We propose a novel $K$-nearest neighbor reparametric procedure for estimating the performance of a policy from historical data.
Our analysis allows for the sampling of entire episodes, as is common practice in most applications.
Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization, and does not explicitly assume a parametric model for the environment's dynamics.
arXiv Detail & Related papers (2023-06-07T23:55:12Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Adversarial Robustness Guarantees for Gaussian Processes [22.403365399119107]
Gaussian processes (GPs) enable principled computation of model uncertainty, making them attractive for safety-critical applications.
We present a framework to analyse adversarial robustness of GPs, defined as invariance of the model's decision to bounded perturbations.
We develop a branch-and-bound scheme to refine the bounds and show, for any $epsilon > 0$, that our algorithm is guaranteed to converge to values $epsilon$-close to the actual values in finitely many iterations.
arXiv Detail & Related papers (2021-04-07T15:14:56Z) - Stochastic Reweighted Gradient Descent [4.355567556995855]
We propose an importance-sampling-based algorithm we call SRG (stochastic reweighted gradient)
We pay particular attention to the time and memory overhead of our proposed method.
We present empirical results to support our findings.
arXiv Detail & Related papers (2021-03-23T04:09:43Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z) - Improved Algorithms for Conservative Exploration in Bandits [113.55554483194832]
We study the conservative learning problem in the contextual linear bandit setting and introduce a novel algorithm, the Conservative Constrained LinUCB (CLUCB2)
We derive regret bounds for CLUCB2 that match existing results and empirically show that it outperforms state-of-the-art conservative bandit algorithms in a number of synthetic and real-world problems.
arXiv Detail & Related papers (2020-02-08T19:35:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.