Affective-NLI: Towards Accurate and Interpretable Personality Recognition in Conversation
- URL: http://arxiv.org/abs/2404.02589v1
- Date: Wed, 3 Apr 2024 09:14:24 GMT
- Title: Affective-NLI: Towards Accurate and Interpretable Personality Recognition in Conversation
- Authors: Zhiyuan Wen, Jiannong Cao, Yu Yang, Ruosong Yang, Shuaiqi Liu,
- Abstract summary: Personality Recognition in Conversation (PRC) aims to identify the personality traits of speakers through textual dialogue content.
We propose Affective Natural Language Inference (Affective-NLI) for accurate and interpretable PRC.
- Score: 30.820334868031537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personality Recognition in Conversation (PRC) aims to identify the personality traits of speakers through textual dialogue content. It is essential for providing personalized services in various applications of Human-Computer Interaction (HCI), such as AI-based mental therapy and companion robots for the elderly. Most recent studies analyze the dialog content for personality classification yet overlook two major concerns that hinder their performance. First, crucial implicit factors contained in conversation, such as emotions that reflect the speakers' personalities are ignored. Second, only focusing on the input dialog content disregards the semantic understanding of personality itself, which reduces the interpretability of the results. In this paper, we propose Affective Natural Language Inference (Affective-NLI) for accurate and interpretable PRC. To utilize affectivity within dialog content for accurate personality recognition, we fine-tuned a pre-trained language model specifically for emotion recognition in conversations, facilitating real-time affective annotations for utterances. For interpretability of recognition results, we formulate personality recognition as an NLI problem by determining whether the textual description of personality labels is entailed by the dialog content. Extensive experiments on two daily conversation datasets suggest that Affective-NLI significantly outperforms (by 6%-7%) state-of-the-art approaches. Additionally, our Flow experiment demonstrates that Affective-NLI can accurately recognize the speaker's personality in the early stages of conversations by surpassing state-of-the-art methods with 22%-34%.
Related papers
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - Enhancing Personality Recognition in Dialogue by Data Augmentation and
Heterogeneous Conversational Graph Networks [30.33718960981521]
Personality recognition is useful for enhancing robots' ability to tailor user-adaptive responses.
One of the challenges in this task is a limited number of speakers in existing dialogue corpora.
arXiv Detail & Related papers (2024-01-11T12:27:33Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
Affect recognition plays a pivotal role in human communication.
This study investigates the capacity of large language models (LLMs) to recognise human affect in conversations.
arXiv Detail & Related papers (2023-09-22T14:11:23Z) - deep learning of segment-level feature representation for speech emotion
recognition in conversations [9.432208348863336]
We propose a conversational speech emotion recognition method to deal with capturing attentive contextual dependency and speaker-sensitive interactions.
First, we use a pretrained VGGish model to extract segment-based audio representation in individual utterances.
Second, an attentive bi-directional recurrent unit (GRU) models contextual-sensitive information and explores intra- and inter-speaker dependencies jointly.
arXiv Detail & Related papers (2023-02-05T16:15:46Z) - CPED: A Large-Scale Chinese Personalized and Emotional Dialogue Dataset
for Conversational AI [48.67259855309959]
Most existing datasets for conversational AI ignore human personalities and emotions.
We propose CPED, a large-scale Chinese personalized and emotional dialogue dataset.
CPED contains more than 12K dialogues of 392 speakers from 40 TV shows.
arXiv Detail & Related papers (2022-05-29T17:45:12Z) - Learning Graph Representation of Person-specific Cognitive Processes
from Audio-visual Behaviours for Automatic Personality Recognition [17.428626029689653]
We propose to represent the target subjects person-specific cognition in the form of a person-specific CNN architecture.
Each person-specific CNN is explored by the Neural Architecture Search (NAS) and a novel adaptive loss function.
Experimental results show that the produced graph representations are well associated with target subjects' personality traits.
arXiv Detail & Related papers (2021-10-26T11:04:23Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
We provide a NICO robot with the ability to learn the associations between a perceived auditory stimulus and an emotional expression.
NICO is able to do this for both individual subjects and specific stimuli, with the aid of an emotion-driven dialogue system.
The robot is then able to use this information to determine a subject's enjoyment of perceived auditory stimuli in a real HRI scenario.
arXiv Detail & Related papers (2021-03-05T20:55:48Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.