Affect Recognition in Conversations Using Large Language Models
- URL: http://arxiv.org/abs/2309.12881v2
- Date: Mon, 5 Aug 2024 12:13:39 GMT
- Title: Affect Recognition in Conversations Using Large Language Models
- Authors: Shutong Feng, Guangzhi Sun, Nurul Lubis, Wen Wu, Chao Zhang, Milica Gašić,
- Abstract summary: Affect recognition plays a pivotal role in human communication.
This study investigates the capacity of large language models (LLMs) to recognise human affect in conversations.
- Score: 9.689990547610664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Affect recognition, encompassing emotions, moods, and feelings, plays a pivotal role in human communication. In the realm of conversational artificial intelligence, the ability to discern and respond to human affective cues is a critical factor for creating engaging and empathetic interactions. This study investigates the capacity of large language models (LLMs) to recognise human affect in conversations, with a focus on both open-domain chit-chat dialogues and task-oriented dialogues. Leveraging three diverse datasets, namely IEMOCAP (Busso et al., 2008), EmoWOZ (Feng et al., 2022), and DAIC-WOZ (Gratch et al., 2014), covering a spectrum of dialogues from casual conversations to clinical interviews, we evaluate and compare LLMs' performance in affect recognition. Our investigation explores the zero-shot and few-shot capabilities of LLMs through in-context learning as well as their model capacities through task-specific fine-tuning. Additionally, this study takes into account the potential impact of automatic speech recognition errors on LLM predictions. With this work, we aim to shed light on the extent to which LLMs can replicate human-like affect recognition capabilities in conversations.
Related papers
- From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations [19.67703146838264]
Large Language Models (LLMs) have revolutionized the generation of emotional support conversations.
This paper explores the role of personas in the creation of emotional support conversations.
arXiv Detail & Related papers (2025-02-17T05:24:30Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
This study is the first to explore the potential of Large Language Models (LLMs) in recognizing ambiguous emotions.
We design zero-shot and few-shot prompting and incorporate past dialogue as context information for ambiguous emotion recognition.
arXiv Detail & Related papers (2024-09-26T23:25:21Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
We study how reliance is affected by contextual features of an interaction.
We find that contextual characteristics significantly affect human reliance behavior.
Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions.
arXiv Detail & Related papers (2024-07-10T18:00:05Z) - Can LLMs Understand the Implication of Emphasized Sentences in Dialogue? [64.72966061510375]
Emphasis is a crucial component in human communication, which indicates the speaker's intention and implication beyond pure text in dialogue.
This paper introduces Emphasized-Talk, a benchmark with emphasis-annotated dialogue samples capturing the implications of emphasis.
We evaluate various Large Language Models (LLMs), both open-source and commercial, to measure their performance in understanding emphasis.
arXiv Detail & Related papers (2024-06-16T20:41:44Z) - Affective-NLI: Towards Accurate and Interpretable Personality Recognition in Conversation [30.820334868031537]
Personality Recognition in Conversation (PRC) aims to identify the personality traits of speakers through textual dialogue content.
We propose Affective Natural Language Inference (Affective-NLI) for accurate and interpretable PRC.
arXiv Detail & Related papers (2024-04-03T09:14:24Z) - Reasoning in Conversation: Solving Subjective Tasks through Dialogue
Simulation for Large Language Models [56.93074140619464]
We propose RiC (Reasoning in Conversation), a method that focuses on solving subjective tasks through dialogue simulation.
The motivation of RiC is to mine useful contextual information by simulating dialogues instead of supplying chain-of-thought style rationales.
We evaluate both API-based and open-source LLMs including GPT-4, ChatGPT, and OpenChat across twelve tasks.
arXiv Detail & Related papers (2024-02-27T05:37:10Z) - LLM Agents in Interaction: Measuring Personality Consistency and
Linguistic Alignment in Interacting Populations of Large Language Models [4.706971067968811]
We create a two-group population of large language models (LLMs) agents using a simple variability-inducing sampling algorithm.
We administer personality tests and submit the agents to a collaborative writing task, finding that different profiles exhibit different degrees of personality consistency and linguistic alignment to their conversational partners.
arXiv Detail & Related papers (2024-02-05T11:05:20Z) - Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference [40.96005200292604]
We present an innovative framework named Sensible and Visionary Commonsense Knowledge (Sibyl)
It is designed to concentrate on the immediately succeeding dialogue, aiming to elicit more empathetic responses.
Experimental results demonstrate that incorporating our paradigm for acquiring commonsense knowledge into LLMs comprehensively enhances the quality of their responses.
arXiv Detail & Related papers (2023-11-26T14:35:23Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
This report provides a preliminary evaluation of existing large language models for human-style multi-turn chatting.
We prompt large language models (LLMs) to generate a full multi-turn dialogue based on the ChatSEED, utterance by utterance.
We find GPT-4 can generate human-style multi-turn dialogues with impressive quality, significantly outperforms its counterparts.
arXiv Detail & Related papers (2023-10-20T16:53:51Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
We take the first step towards exploring the ability of Large Language Models to understand emotional stimuli.
Our experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts.
Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks.
arXiv Detail & Related papers (2023-07-14T00:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.