論文の概要: Adaptive Sampling Policies Imply Biased Beliefs: A Generalization of the Hot Stove Effect
- arxiv url: http://arxiv.org/abs/2404.02591v1
- Date: Wed, 3 Apr 2024 09:15:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:50:35.123706
- Title: Adaptive Sampling Policies Imply Biased Beliefs: A Generalization of the Hot Stove Effect
- Title(参考訳): 適応サンプリング法--ホットストーブ効果の一般化
- Authors: Jerker Denrell,
- Abstract要約: ホットストーブ効果(Hot Stove Effect)は、学習の適応性から生じる負性バイアスである。
負の見積もりが必ずしも回避に繋がるのではなく、より小さいサンプルサイズに繋がることを示す。
また,ベイズ学習者には,ほとんどの学習者が期待する代替案の価値を過小評価しているという意味で,負性バイアスがあることも示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Hot Stove Effect is a negativity bias resulting from the adaptive character of learning. The mechanism is that learning algorithms that pursue alternatives with positive estimated values, but avoid alternatives with negative estimated values, will correct errors of overestimation but fail to correct errors of underestimation. Here, we generalize the theory behind the Hot Stove Effect to settings in which negative estimates do not necessarily lead to avoidance but to a smaller sample size (i.e., a learner selects fewer of alternative B if B is believed to be inferior but does not entirely avoid B). We formally demonstrate that the negativity bias remains in this set-up. We also show there is a negativity bias for Bayesian learners in the sense that most such learners underestimate the expected value of an alternative.
- Abstract(参考訳): ホットストーブ効果(Hot Stove Effect)は、学習の適応性から生じる負性バイアスである。
そのメカニズムは、肯定的な推定値を持つ代替品を追求するが、負の推定値を持つ代替品を避ける学習アルゴリズムが過大評価の誤りを正すが、過小評価の誤りを正さないことである。
ここで、ホットストーブ効果の背景にある理論を、負の見積もりが必ずしも回避に繋がるのではなく、より小さいサンプルサイズに導く設定に一般化する。
我々は、この設定の中に負性バイアスが残っていることを正式に証明する。
また,ベイズ学習者には,ほとんどの学習者が期待する代替案の価値を過小評価しているという意味で,負性バイアスがあることも示している。
関連論文リスト
- Negating Negatives: Alignment with Human Negative Samples via Distributional Dispreference Optimization [37.8788435790632]
大規模言語モデル(LLM)は、AIの役割に革命をもたらしたが、潜在的な社会的リスクをもたらしている。
既存の方法は高品質な正負の訓練ペアに依存しており、ノイズの多い正の反応に悩まされており、負の反応とほとんど区別できない。
本稿では,非参照応答と生成した非負応答との差を最大化する分散参照最適化(D$2$O)を提案する。
論文 参考訳(メタデータ) (2024-03-06T03:02:38Z) - Contrastive Learning with Negative Sampling Correction [52.990001829393506]
PUCL(Positive-Unlabeled Contrastive Learning)という新しいコントラスト学習手法を提案する。
PUCLは生成した負のサンプルをラベルのないサンプルとして扱い、正のサンプルからの情報を用いて、対照的な損失のバイアスを補正する。
PUCLは一般的なコントラスト学習問題に適用でき、様々な画像やグラフの分類タスクにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-01-13T11:18:18Z) - Your Negative May not Be True Negative: Boosting Image-Text Matching
with False Negative Elimination [62.18768931714238]
提案手法は, サンプリングによる新規な偽陰性除去 (FNE) 戦略である。
その結果,提案した偽陰性除去戦略の優位性が示された。
論文 参考訳(メタデータ) (2023-08-08T16:31:43Z) - Equivariance and Invariance Inductive Bias for Learning from
Insufficient Data [65.42329520528223]
不十分なデータがモデルを、通常テストとは異なる限られたトレーニング環境にバイアスしやすくする理由が示されています。
従来のIRMにおける環境アノテーションの欠如を効果的に解決するクラスワイド不変リスク最小化(IRM)を提案する。
論文 参考訳(メタデータ) (2022-07-25T15:26:19Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Negative Sampling for Recommendation [7.758275614033198]
高品質なネガティブなインスタンスを効果的にサンプルする方法は、レコメンデーションモデルを適切にトレーニングするために重要である。
我々は、高品質なネガティブは、テクスチュンフォームネスとテクスチュンバイアスネスの両方であるべきだと論じる。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - Classification from Positive and Biased Negative Data with Skewed
Labeled Posterior Probability [0.0]
正負負の分類問題 (PbN) にアプローチする新しい手法を提案する。
本手法は, 観測データの正の後方確率を表すスキュード信頼による負の影響を補正する手法を組み込んだものである。
論文 参考訳(メタデータ) (2022-03-11T04:31:35Z) - Mixture Proportion Estimation and PU Learning: A Modern Approach [47.34499672878859]
正の例とラベルなしの例のみを考えると、正逆負の正の正の分類器を正確に見積もることを望むかもしれない。
両方の問題の古典的な方法は、高次元の設定で分解される。
BBE(Best Bin Estimation)とCVIR(Value Ignoring Risk)の2つの簡単な手法を提案する。
論文 参考訳(メタデータ) (2021-11-01T14:42:23Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
半定量的理論フレームワークを用いて, InfoNCE に最適化された負のサンプル数について検討した。
トレーニングの有効性関数を最大化する$K$値を用いて,最適負サンプリング比を推定する。
論文 参考訳(メタデータ) (2021-05-27T08:38:29Z) - Positive-Congruent Training: Towards Regression-Free Model Updates [87.25247195148187]
画像分類において、サンプルワイドの不整合は「負のフリップ」として現れる
新しいモデルは、古い(参照)モデルによって正しく分類されたテストサンプルの出力を誤って予測する。
そこで本研究では,PC トレーニングのための簡易なアプローチである Focal Distillation を提案する。
論文 参考訳(メタデータ) (2020-11-18T09:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。