論文の概要: X-SHIELD: Regularization for eXplainable Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2404.02611v2
- Date: Thu, 14 Nov 2024 22:53:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:08.631918
- Title: X-SHIELD: Regularization for eXplainable Artificial Intelligence
- Title(参考訳): X-SHIELD: eXplainable Artificial Intelligenceの正規化
- Authors: Iván Sevillano-García, Julián Luengo, Francisco Herrera,
- Abstract要約: XAIは、その説明可能性を高めながら、モデルパフォーマンスを改善するために使用することができる。
このファミリー内では、説明可能な人工知能の正規化であるXAI-ShiELD(X-SHIELD)を提案する。
この改善は、X-SHIELD正則化の有無とモデルの比較実験によって検証される。
- 参考スコア(独自算出の注目度): 9.658282892513386
- License:
- Abstract: As artificial intelligence systems become integral across domains, the demand for explainability grows, the called eXplainable artificial intelligence (XAI). Existing efforts primarily focus on generating and evaluating explanations for black-box models while a critical gap in directly enhancing models remains through these evaluations. It is important to consider the potential of this explanation process to improve model quality with a feedback on training as well. XAI may be used to improve model performance while boosting its explainability. Under this view, this paper introduces Transformation - Selective Hidden Input Evaluation for Learning Dynamics (T-SHIELD), a regularization family designed to improve model quality by hiding features of input, forcing the model to generalize without those features. Within this family, we propose the XAI - SHIELD(X-SHIELD), a regularization for explainable artificial intelligence, which uses explanations to select specific features to hide. In contrast to conventional approaches, X-SHIELD regularization seamlessly integrates into the objective function enhancing model explainability while also improving performance. Experimental validation on benchmark datasets underscores X-SHIELD's effectiveness in improving performance and overall explainability. The improvement is validated through experiments comparing models with and without the X-SHIELD regularization, with further analysis exploring the rationale behind its design choices. This establishes X-SHIELD regularization as a promising pathway for developing reliable artificial intelligence regularization.
- Abstract(参考訳): 人工知能システムがドメイン間で統合されるにつれて、説明可能性の需要は増大し、eXplainable Artificial Intelligence (XAI)と呼ばれる。
既存の取り組みは主にブラックボックスモデルの説明の生成と評価に重点を置いているが、モデルを直接強化する上で重要なギャップはこれらの評価を通じて残っている。
モデル品質を改善するためのこの説明プロセスの可能性についても,トレーニングへのフィードバックで検討することが重要である。
XAIは、その説明可能性を高めながら、モデルパフォーマンスを改善するために使用することができる。
そこで本研究では,入力の特徴を隠蔽してモデル品質を向上させる正規化ファミリであるTransform - Selective Hidden Input Evaluation for Learning Dynamics (T-SHIELD)を紹介する。
このファミリー内では、説明可能な人工知能の正規化であるXAI-ShiELD(X-SHIELD)を提案する。
従来の手法とは対照的に、X-SHIELD正則化は目的関数にシームレスに統合され、モデル説明性が向上し、性能も向上する。
ベンチマークデータセットに対する実験的検証は、X-SHIELDがパフォーマンスと全体的な説明可能性を改善するための有効性を示している。
この改善は、X-SHIELD正則化と非正則化モデルの比較実験を通じて検証され、設計選択の背後にある理論的根拠についてさらなる分析が行われる。
これにより、信頼性の高い人工知能正規化を開発するための有望な経路として、X-SHIELD正規化が確立される。
関連論文リスト
- Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
我々は、レンズを通して自己改善の能力について、新たな視点を提供する。
言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。
SFTとRLHFに基づく自己改善アルゴリズムの2つの自然ファミリーを解析する。
論文 参考訳(メタデータ) (2024-12-02T20:24:17Z) - Learning to Generate and Evaluate Fact-checking Explanations with Transformers [10.970249299147866]
XAI(Explainable Artificial Antelligence)の研究
我々は,人間のアクセス可能な説明を生成することによって,意思決定を文脈化し,正当化するトランスフォーマーベースの事実チェックモデルを開発した。
我々は人工知能(AI)による説明と人間の判断を一致させる必要性を強調した。
論文 参考訳(メタデータ) (2024-10-21T06:22:51Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
人工知能に基づく意思決定のサポートは、将来の6Gネットワークの重要な要素である。
このようなアプリケーションでは、ブラックボックスモデルとしてAIを使用するのは危険で難しい。
本稿では,無線通信におけるチャネル推定を目的とした新しいXAI-CHESTフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T16:24:21Z) - EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods [1.6383837447674294]
本稿では、初期ベンチマークプラットフォームにおいて、様々なベンチマークデータセットと新しいパフォーマンス指標をまとめる。
我々のデータセットには、クラス条件の特徴に対する真実の説明が組み込まれています。
このプラットフォームは、それらが生成する説明の品質において、ポストホックなXAIメソッドのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-05-20T14:16:06Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - survex: an R package for explaining machine learning survival models [8.028581359682239]
本稿では,人工知能技術を適用して生存モデルを説明するためのフレームワークであるsurvex Rパッケージを紹介する。
提案するソフトウェアの能力は生存モデルの理解と診断を含んでおり、その改善につながる可能性がある。
論文 参考訳(メタデータ) (2023-08-30T16:14:20Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
SAM(Self-attention mechanism)は、人工知能の様々な分野で広く使われている。
常微分方程式(ODE)の高精度解における固有剛性現象(SP)は,高性能ニューラルネットワーク(NN)にも広く存在することを示す。
SAMは、本質的なSPを測定するためのモデルの表現能力を高めることができる剛性対応のステップサイズ適応器でもあることを示す。
論文 参考訳(メタデータ) (2023-08-19T08:17:41Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。