Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation
- URL: http://arxiv.org/abs/2404.02616v1
- Date: Wed, 3 Apr 2024 10:05:47 GMT
- Title: Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation
- Authors: Yizhu Liu, Ran Tao, Shengyu Guo, Yifan Yang,
- Abstract summary: In most social search scenarios such as Dianping, modeling search relevance always faces two challenges.
We first take queryd with the query-based summary and the document summary without query as the input of topic relevance model.
Then, we utilize the language understanding and generation abilities of large language model (LLM) to rewrite and generate query from queries and documents in existing training data.
- Score: 16.170841777591345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic relevance between query and document is a very important part of social search, which can evaluate the degree of matching between document and user's requirement. In most social search scenarios such as Dianping, modeling search relevance always faces two challenges. One is that many documents in social search are very long and have much redundant information. The other is that the training data for search relevance model is difficult to get, especially for multi-classification relevance model. To tackle above two problems, we first take query concatenated with the query-based summary and the document summary without query as the input of topic relevance model, which can help model learn the relevance degree between query and the core topic of document. Then, we utilize the language understanding and generation abilities of large language model (LLM) to rewrite and generate query from queries and documents in existing training data, which can construct new query-document pairs as training data. Extensive offline experiments and online A/B tests show that the proposed approaches effectively improve the performance of relevance modeling.
Related papers
- Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
We introduce a framework called GRaded Generative Retrieval (GR$2$)
GR$2$ focuses on two key components: ensuring relevant and distinct identifiers, and implementing multi-graded constrained contrastive training.
Experiments on datasets with both multi-graded and binary relevance demonstrate the effectiveness of GR$2$.
arXiv Detail & Related papers (2024-09-27T02:55:53Z) - Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering [12.60063463163226]
IIER captures the internal connections between document chunks by considering three types of interactions: structural, keyword, and semantic.
It identifies multiple seed nodes based on the target question and iteratively searches for relevant chunks to gather supporting evidence.
It refines the context and reasoning chain, aiding the large language model in reasoning and answer generation.
arXiv Detail & Related papers (2024-08-06T02:39:55Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
We present a novel retrieval framework called Database-Augmented Query representation (DAQu)
DAQu augments the original query with various (query-related) metadata across multiple tables.
We validate DAQu in diverse retrieval scenarios that can incorporate metadata from the relational database.
arXiv Detail & Related papers (2024-06-23T05:02:21Z) - Quest: Query-centric Data Synthesis Approach for Long-context Scaling of Large Language Model [22.07414287186125]
Quest is a query-centric data method aggregating semantically relevant yet diverse documents.
It uses a generative model to predict potential queries for each document, grouping documents with similar queries and keywords.
Experiments demonstrate Quest's superior performance on long-context tasks, achieving remarkable results with context lengths of up to 1M tokens.
arXiv Detail & Related papers (2024-05-30T08:50:55Z) - SPM: Structured Pretraining and Matching Architectures for Relevance
Modeling in Meituan Search [12.244685291395093]
In e-commerce search, relevance between query and documents is an essential requirement for satisfying user experience.
We propose a novel two-stage pretraining and matching architecture for relevance matching with rich structured documents.
The model has already been deployed online, serving the search traffic of Meituan for over a year.
arXiv Detail & Related papers (2023-08-15T11:45:34Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Query Understanding via Intent Description Generation [75.64800976586771]
We propose a novel Query-to-Intent-Description (Q2ID) task for query understanding.
Unlike existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description.
We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task.
arXiv Detail & Related papers (2020-08-25T08:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.