Quest: Query-centric Data Synthesis Approach for Long-context Scaling of Large Language Model
- URL: http://arxiv.org/abs/2405.19846v5
- Date: Wed, 09 Oct 2024 12:14:22 GMT
- Title: Quest: Query-centric Data Synthesis Approach for Long-context Scaling of Large Language Model
- Authors: Chaochen Gao, Xing Wu, Qi Fu, Songlin Hu,
- Abstract summary: Quest is a query-centric data method aggregating semantically relevant yet diverse documents.
It uses a generative model to predict potential queries for each document, grouping documents with similar queries and keywords.
Experiments demonstrate Quest's superior performance on long-context tasks, achieving remarkable results with context lengths of up to 1M tokens.
- Score: 22.07414287186125
- License:
- Abstract: Recent advancements in large language models (LLMs) have highlighted the importance of extending context lengths for handling complex tasks. While traditional methods for training on long contexts often use filtered long documents, these approaches lead to domain imbalances, limiting model performance. To address this, techniques like random document concatenation (Standard) and similarity-based methods (KNN, ICLM) have been developed. However, they either sacrifice semantic coherence or diversity. To balance both aspects, we introduce Quest, a query-centric data synthesis method aggregating semantically relevant yet diverse documents. Quest uses a generative model to predict potential queries for each document, grouping documents with similar queries and keywords. Extensive experiments demonstrate Quest's superior performance on long-context tasks, achieving remarkable results with context lengths of up to 1M tokens and confirming its scalability across various model sizes.
Related papers
- Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [52.02764371205856]
Long context capability is a crucial competency for large language models (LLMs)
This work provides a taxonomy of current methods and evaluating 10+ state-of-the-art approaches across seven categories of long context tasks.
arXiv Detail & Related papers (2024-07-01T17:59:47Z) - Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation [16.170841777591345]
In most social search scenarios such as Dianping, modeling search relevance always faces two challenges.
We first take queryd with the query-based summary and the document summary without query as the input of topic relevance model.
Then, we utilize the language understanding and generation abilities of large language model (LLM) to rewrite and generate query from queries and documents in existing training data.
arXiv Detail & Related papers (2024-04-03T10:05:47Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
We propose an iterative retrieval-generation collaborative framework.
We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks.
arXiv Detail & Related papers (2023-10-08T12:50:57Z) - Query Expansion Using Contextual Clue Sampling with Language Models [69.51976926838232]
We propose a combination of an effective filtering strategy and fusion of the retrieved documents based on the generation probability of each context.
Our lexical matching based approach achieves a similar top-5/top-20 retrieval accuracy and higher top-100 accuracy compared with the well-established dense retrieval model DPR.
For end-to-end QA, the reader model also benefits from our method and achieves the highest Exact-Match score against several competitive baselines.
arXiv Detail & Related papers (2022-10-13T15:18:04Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - Query-Based Keyphrase Extraction from Long Documents [4.823229052465654]
This paper overcomes issue for keyphrase extraction by chunking the long documents.
System employs a pre-trained BERT model and adapts it to estimate the probability that a given text span forms a keyphrase.
arXiv Detail & Related papers (2022-05-11T10:29:30Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Tradeoffs in Sentence Selection Techniques for Open-Domain Question
Answering [54.541952928070344]
We describe two groups of models for sentence selection: QA-based approaches, which run a full-fledged QA system to identify answer candidates, and retrieval-based models, which find parts of each passage specifically related to each question.
We show that very lightweight QA models can do well at this task, but retrieval-based models are faster still.
arXiv Detail & Related papers (2020-09-18T23:39:15Z) - Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical
Encoder for Long-Form Document Matching [28.190001111358438]
We propose a Siamese Multi-depth Transformer-based SMITH for long-form document matching.
Our model contains several innovations to adapt self-attention models for longer text input.
We will open source a Wikipedia based benchmark dataset, code and a pre-trained checkpoint to accelerate future research on long-form document matching.
arXiv Detail & Related papers (2020-04-26T07:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.