3DStyleGLIP: Part-Tailored Text-Guided 3D Neural Stylization
- URL: http://arxiv.org/abs/2404.02634v1
- Date: Wed, 3 Apr 2024 10:44:06 GMT
- Title: 3DStyleGLIP: Part-Tailored Text-Guided 3D Neural Stylization
- Authors: SeungJeh Chung, JooHyun Park, Hyewon Kan, HyeongYeop Kang,
- Abstract summary: 3DStyleGLIP is a novel framework specifically designed for text-driven, part-tailored 3D stylization.
Our method achieves significant part-wise stylization capabilities, demonstrating promising potential in advancing the field of 3D stylization.
- Score: 1.2499537119440243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D stylization, which entails the application of specific styles to three-dimensional objects, holds significant commercial potential as it enables the creation of diverse 3D objects with distinct moods and styles, tailored to specific demands of different scenes. With recent advancements in text-driven methods and artificial intelligence, the stylization process is increasingly intuitive and automated, thereby diminishing the reliance on manual labor and expertise. However, existing methods have predominantly focused on holistic stylization, thereby leaving the application of styles to individual components of a 3D object unexplored. In response, we introduce 3DStyleGLIP, a novel framework specifically designed for text-driven, part-tailored 3D stylization. Given a 3D mesh and a text prompt, 3DStyleGLIP leverages the vision-language embedding space of the Grounded Language-Image Pre-training (GLIP) model to localize the individual parts of the 3D mesh and modify their colors and local geometries to align them with the desired styles specified in the text prompt. 3DStyleGLIP is effectively trained for 3D stylization tasks through a part-level style loss working in GLIP's embedding space, supplemented by two complementary learning techniques. Extensive experimental validation confirms that our method achieves significant part-wise stylization capabilities, demonstrating promising potential in advancing the field of 3D stylization.
Related papers
- StyleSplat: 3D Object Style Transfer with Gaussian Splatting [0.3374875022248866]
Style transfer can enhance 3D assets with diverse artistic styles, transforming creative expression.
We introduce StyleSplat, a method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images.
We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
arXiv Detail & Related papers (2024-07-12T17:55:08Z) - Chat-Edit-3D: Interactive 3D Scene Editing via Text Prompts [76.73043724587679]
We propose a dialogue-based 3D scene editing approach, termed CE3D.
Hash-Atlas represents 3D scene views, which transfers the editing of 3D scenes onto 2D atlas images.
Results demonstrate that CE3D effectively integrates multiple visual models to achieve diverse editing visual effects.
arXiv Detail & Related papers (2024-07-09T13:24:42Z) - StylizedGS: Controllable Stylization for 3D Gaussian Splatting [53.0225128090909]
StylizedGS is an efficient 3D neural style transfer framework with adaptable control over perceptual factors.
Our method achieves high-quality stylization results characterized by faithful brushstrokes and geometric consistency with flexible controls.
arXiv Detail & Related papers (2024-04-08T06:32:11Z) - TeMO: Towards Text-Driven 3D Stylization for Multi-Object Meshes [67.5351491691866]
We present a novel framework, dubbed TeMO, to parse multi-object 3D scenes and edit their styles.
Our method can synthesize high-quality stylized content and outperform the existing methods over a wide range of multi-object 3D meshes.
arXiv Detail & Related papers (2023-12-07T12:10:05Z) - Neural 3D Strokes: Creating Stylized 3D Scenes with Vectorized 3D
Strokes [20.340259111585873]
We present Neural 3D Strokes, a novel technique to generate stylized images of a 3D scene at arbitrary novel views from multi-view 2D images.
Our approach draws inspiration from image-to-painting methods, simulating the progressive painting process of human artwork with vector strokes.
arXiv Detail & Related papers (2023-11-27T09:02:21Z) - DeformToon3D: Deformable 3D Toonification from Neural Radiance Fields [96.0858117473902]
3D toonification involves transferring the style of an artistic domain onto a target 3D face with stylized geometry and texture.
We propose DeformToon3D, an effective toonification framework tailored for hierarchical 3D GAN.
Our approach decomposes 3D toonification into subproblems of geometry and texture stylization to better preserve the original latent space.
arXiv Detail & Related papers (2023-09-08T16:17:45Z) - HyperStyle3D: Text-Guided 3D Portrait Stylization via Hypernetworks [101.36230756743106]
This paper is inspired by the success of 3D-aware GANs that bridge 2D and 3D domains with 3D fields as the intermediate representation for rendering 2D images.
We propose a novel method, dubbed HyperStyle3D, based on 3D-aware GANs for 3D portrait stylization.
arXiv Detail & Related papers (2023-04-19T07:22:05Z) - 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style
Variations [81.45521258652734]
We propose a method to create plausible geometric and texture style variations of 3D objects.
Our method can create many novel stylized shapes, resulting in effortless 3D content creation and style-ware data augmentation.
arXiv Detail & Related papers (2021-08-30T02:28:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.