論文の概要: Towards detecting unanticipated bias in Large Language Models
- arxiv url: http://arxiv.org/abs/2404.02650v1
- Date: Wed, 3 Apr 2024 11:25:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:40:49.830434
- Title: Towards detecting unanticipated bias in Large Language Models
- Title(参考訳): 大規模言語モデルにおける予測外バイアスの検出に向けて
- Authors: Anna Kruspe,
- Abstract要約: LLM(Large Language Models)は、従来の機械学習システムと同様の公平性問題を示す。
本研究は、トレーニングデータにおけるバイアスの分析と定量化と、それらのモデルの決定に対する影響に焦点を当てる。
- 参考スコア(独自算出の注目度): 1.4589372436314496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last year, Large Language Models (LLMs) like ChatGPT have become widely available and have exhibited fairness issues similar to those in previous machine learning systems. Current research is primarily focused on analyzing and quantifying these biases in training data and their impact on the decisions of these models, alongside developing mitigation strategies. This research largely targets well-known biases related to gender, race, ethnicity, and language. However, it is clear that LLMs are also affected by other, less obvious implicit biases. The complex and often opaque nature of these models makes detecting such biases challenging, yet this is crucial due to their potential negative impact in various applications. In this paper, we explore new avenues for detecting these unanticipated biases in LLMs, focusing specifically on Uncertainty Quantification and Explainable AI methods. These approaches aim to assess the certainty of model decisions and to make the internal decision-making processes of LLMs more transparent, thereby identifying and understanding biases that are not immediately apparent. Through this research, we aim to contribute to the development of fairer and more transparent AI systems.
- Abstract(参考訳): 昨年、ChatGPTのようなLarge Language Models (LLM)が広く利用され、従来の機械学習システムと同様の公平性の問題が報告された。
現在の研究は主に、トレーニングデータにおけるこれらのバイアスの分析と定量化、およびそれらのモデルの決定に対する影響、緩和戦略の開発に重点を置いている。
この研究は主に、性別、人種、民族、言語に関するよく知られた偏見を対象とする。
しかし、LSMが他の暗黙のバイアスの影響を受けていることは明らかである。
これらのモデルの複雑でしばしば不透明な性質は、そのようなバイアスを検出することを困難にしている。
本稿では,不確かさの定量化と説明可能なAI手法に特化して,LLMにおけるこれらの予期せぬバイアスを検出するための新たな道を探る。
これらのアプローチは、モデル決定の確実性を評価し、LCMの内部決定プロセスをより透明にすることを目的としており、即時に明らかでないバイアスを特定し、理解することを目的としている。
本研究は,より公平で透明性の高いAIシステムの開発に貢献することを目的としている。
関連論文リスト
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
大規模言語モデル(LLM)は幅広いタスクで採用されている。
最近の研究では、LLMは明示的な偏見評価をパスしても暗黙の偏見を抑えることができることが示されている。
この研究は、新しい言語モデルやより大きな言語モデルが自動的にバイアスを減らさないことを強調している。
論文 参考訳(メタデータ) (2024-10-13T03:43:18Z) - Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
本稿では,認知バイアスが大規模言語モデル(LLM)に基づくニュースレコメンデータシステムに与える影響について検討する。
データ拡張、エンジニアリングと学習アルゴリズムの側面を通じて、これらのバイアスを軽減する戦略について議論する。
論文 参考訳(メタデータ) (2024-10-03T18:42:07Z) - AI Can Be Cognitively Biased: An Exploratory Study on Threshold Priming in LLM-Based Batch Relevance Assessment [37.985947029716016]
大規模言語モデル(LLM)は高度な理解能力を示しているが、トレーニングデータから人間のバイアスを継承する可能性がある。
関連判定におけるしきい値プライミング効果の影響について検討した。
論文 参考訳(メタデータ) (2024-09-24T12:23:15Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
大規模言語モデル(LLM)による決定に影響を与えるため、暗黙のバイアスは重要である。
伝統的に、明示的なバイアステストや埋め込みベースの手法はバイアスを検出するために使用されるが、これらのアプローチはより微妙で暗黙的なバイアスの形式を見落としることができる。
提案手法は, 暗黙の偏見を明らかにするために, 即発的, 意思決定的タスクによる2つの新しい心理学的手法を導入している。
論文 参考訳(メタデータ) (2024-07-01T13:21:33Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
大規模言語モデル(LLM)におけるバイアスの存在と性質について検討する。
LLMが特に政治的バイアス予測やテキスト継続タスクにおいてバイアスを示すかどうかを調査する。
我々は,素早い工学とモデル微調整を含む脱バイアス戦略を提案する。
論文 参考訳(メタデータ) (2024-03-22T00:59:48Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。