Deep Privacy Funnel Model: From a Discriminative to a Generative Approach with an Application to Face Recognition
- URL: http://arxiv.org/abs/2404.02696v1
- Date: Wed, 3 Apr 2024 12:50:45 GMT
- Title: Deep Privacy Funnel Model: From a Discriminative to a Generative Approach with an Application to Face Recognition
- Authors: Behrooz Razeghi, Parsa Rahimi, Sébastien Marcel,
- Abstract summary: We apply the information-theoretic Privacy Funnel (PF) model to the domain of face recognition.
We develop a novel method for privacy-preserving representation learning within an end-to-end training framework.
- Score: 20.562833106966405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we apply the information-theoretic Privacy Funnel (PF) model to the domain of face recognition, developing a novel method for privacy-preserving representation learning within an end-to-end training framework. Our approach addresses the trade-off between obfuscation and utility in data protection, quantified through logarithmic loss, also known as self-information loss. This research provides a foundational exploration into the integration of information-theoretic privacy principles with representation learning, focusing specifically on the face recognition systems. We particularly highlight the adaptability of our framework with recent advancements in face recognition networks, such as AdaFace and ArcFace. In addition, we introduce the Generative Privacy Funnel ($\mathsf{GenPF}$) model, a paradigm that extends beyond the traditional scope of the PF model, referred to as the Discriminative Privacy Funnel ($\mathsf{DisPF}$). This $\mathsf{GenPF}$ model brings new perspectives on data generation methods with estimation-theoretic and information-theoretic privacy guarantees. Complementing these developments, we also present the deep variational PF (DVPF) model. This model proposes a tractable variational bound for measuring information leakage, enhancing the understanding of privacy preservation challenges in deep representation learning. The DVPF model, associated with both $\mathsf{DisPF}$ and $\mathsf{GenPF}$ models, sheds light on connections with various generative models such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Diffusion models. Complementing our theoretical contributions, we release a reproducible PyTorch package, facilitating further exploration and application of these privacy-preserving methodologies in face recognition systems.
Related papers
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Deep Variational Privacy Funnel: General Modeling with Applications in
Face Recognition [3.351714665243138]
We develop a method for privacy-preserving representation learning using an end-to-end training framework.
We apply our model to state-of-the-art face recognition systems.
arXiv Detail & Related papers (2024-01-26T11:32:53Z) - Shielding the Unseen: Privacy Protection through Poisoning NeRF with
Spatial Deformation [59.302770084115814]
We introduce an innovative method of safeguarding user privacy against the generative capabilities of Neural Radiance Fields (NeRF) models.
Our novel poisoning attack method induces changes to observed views that are imperceptible to the human eye, yet potent enough to disrupt NeRF's ability to accurately reconstruct a 3D scene.
We extensively test our approach on two common NeRF benchmark datasets consisting of 29 real-world scenes with high-quality images.
arXiv Detail & Related papers (2023-10-04T19:35:56Z) - Share Your Representation Only: Guaranteed Improvement of the
Privacy-Utility Tradeoff in Federated Learning [47.042811490685324]
Mitigating the risk of this information leakage, using state of the art differentially private algorithms, also does not come for free.
In this paper, we consider a representation learning objective that various parties collaboratively refine on a federated model, with differential privacy guarantees.
We observe a significant performance improvement over the prior work under the same small privacy budget.
arXiv Detail & Related papers (2023-09-11T14:46:55Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Privacy-Preserving Wavelet Wavelet Neural Network with Fully Homomorphic
Encryption [5.010425616264462]
Privacy-Preserving Machine Learning (PPML) aims to protect the privacy and provide security to the data used in building Machine Learning models.
We propose a fully homomorphic encrypted wavelet neural network to protect privacy and at the same time not compromise on the efficiency of the model.
arXiv Detail & Related papers (2022-05-26T10:40:31Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - A Generative Federated Learning Framework for Differential Privacy [7.50722199393581]
We present the 3DGL framework, an alternative to the current federated learning paradigms.
Its goal is to share generative models with high levels of $varepsilon$-differential privacy.
In addition, we propose DDP-$beta$VAE, a deep generative model capable of generating synthetic data with high levels of utility and safety for the individual.
arXiv Detail & Related papers (2021-09-24T16:36:19Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model [8.87104231451079]
This paper presents the first gradient-free federated learning framework called GRAFFL.
It uses implicit information derived from each participating institution to learn posterior distributions of parameters.
We propose the GRAFFL-based Bayesian mixture model to serve as a proof-of-concept of the framework.
arXiv Detail & Related papers (2020-08-29T07:19:44Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.