Automatic Prompt Selection for Large Language Models
- URL: http://arxiv.org/abs/2404.02717v1
- Date: Wed, 3 Apr 2024 13:20:24 GMT
- Title: Automatic Prompt Selection for Large Language Models
- Authors: Viet-Tung Do, Van-Khanh Hoang, Duy-Hung Nguyen, Shahab Sabahi, Jeff Yang, Hajime Hotta, Minh-Tien Nguyen, Hung Le,
- Abstract summary: We propose an effective approach to automatically select the optimal prompt for a given input from a finite set of synthetic candidate prompts.
Our approach balances prompt generality-specificity and eliminates the need for resource-intensive training and inference.
It demonstrates competitive performance on zero-shot question-answering datasets: GSM8K, MultiArithm, and AQuA.
- Score: 22.73421169410049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) can perform various natural language processing tasks with suitable instruction prompts. However, designing effective prompts manually is challenging and time-consuming. Existing methods for automatic prompt optimization either lack flexibility or efficiency. In this paper, we propose an effective approach to automatically select the optimal prompt for a given input from a finite set of synthetic candidate prompts. Our approach consists of three steps: (1) clustering the training data and generating candidate prompts for each cluster using an LLM-based prompt generator; (2) synthesizing a dataset of input-prompt-output tuples for training a prompt evaluator to rank the prompts based on their relevance to the input; (3) using the prompt evaluator to select the best prompt for a new input at test time. Our approach balances prompt generality-specificity and eliminates the need for resource-intensive training and inference. It demonstrates competitive performance on zero-shot question-answering datasets: GSM8K, MultiArith, and AQuA.
Related papers
- A Sequential Optimal Learning Approach to Automated Prompt Engineering in Large Language Models [14.483240353801074]
This paper proposes an optimal learning framework for automated prompt engineering.
It is designed to sequentially identify effective prompt features while efficiently allocating a limited evaluation budget.
Our framework provides a solution to deploying automated prompt engineering in a wider range applications.
arXiv Detail & Related papers (2025-01-07T03:51:10Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Large Language Models Prompting With Episodic Memory [53.8690170372303]
We propose PrOmpting with Episodic Memory (POEM), a novel prompt optimization technique that is simple, efficient, and demonstrates strong generalization capabilities.
In the testing phase, we optimize the sequence of examples for each test query by selecting the sequence that yields the highest total rewards from the top-k most similar training examples in the episodic memory.
Our results show that POEM outperforms recent techniques like TEMPERA and RLPrompt by over 5.3% in various text classification tasks.
arXiv Detail & Related papers (2024-08-14T11:19:28Z) - Task Facet Learning: A Structured Approach to Prompt Optimization [14.223730629357178]
We propose an algorithm that learns multiple facets of a task from a set of training examples.
The resulting algorithm, UniPrompt, consists of a generative model to generate initial candidates for each prompt section.
Empirical evaluation on multiple datasets and a real-world task shows that prompts generated using UniPrompt obtain higher accuracy than human-tuned prompts.
arXiv Detail & Related papers (2024-06-15T04:54:26Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuning is a new, efficient NLP transfer learning paradigm that adds a task-specific prompt in each input instance during the model training stage.
We propose a conditional prompt generation method to generate prompts for each input instance.
arXiv Detail & Related papers (2022-04-09T15:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.