Event Camera Demosaicing via Swin Transformer and Pixel-focus Loss
- URL: http://arxiv.org/abs/2404.02731v1
- Date: Wed, 3 Apr 2024 13:30:56 GMT
- Title: Event Camera Demosaicing via Swin Transformer and Pixel-focus Loss
- Authors: Yunfan Lu, Yijie Xu, Wenzong Ma, Weiyu Guo, Hui Xiong,
- Abstract summary: We present a Swin-Transformer-based backbone and a pixel-focus loss function for demosaicing with missing pixel values in RAW domain processing.
Our method harnesses multi-scale processing and space-to-depth techniques to ensure efficiency and reduce computing complexity.
- Score: 17.422153237516767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has highlighted improvements in high-quality imaging guided by event cameras, with most of these efforts concentrating on the RGB domain. However, these advancements frequently neglect the unique challenges introduced by the inherent flaws in the sensor design of event cameras in the RAW domain. Specifically, this sensor design results in the partial loss of pixel values, posing new challenges for RAW domain processes like demosaicing. The challenge intensifies as most research in the RAW domain is based on the premise that each pixel contains a value, making the straightforward adaptation of these methods to event camera demosaicing problematic. To end this, we present a Swin-Transformer-based backbone and a pixel-focus loss function for demosaicing with missing pixel values in RAW domain processing. Our core motivation is to refine a general and widely applicable foundational model from the RGB domain for RAW domain processing, thereby broadening the model's applicability within the entire imaging process. Our method harnesses multi-scale processing and space-to-depth techniques to ensure efficiency and reduce computing complexity. We also proposed the Pixel-focus Loss function for network fine-tuning to improve network convergence based on our discovery of a long-tailed distribution in training loss. Our method has undergone validation on the MIPI Demosaic Challenge dataset, with subsequent analytical experimentation confirming its efficacy. All code and trained models are released here: https://github.com/yunfanLu/ev-demosaic
Related papers
- Toward Efficient Deep Blind RAW Image Restoration [56.41827271721955]
We design a new realistic degradation pipeline for training deep blind RAW restoration models.
Our pipeline considers realistic sensor noise, motion blur, camera shake, and other common degradations.
The models trained with our pipeline and data from multiple sensors, can successfully reduce noise and blur, and recover details in RAW images captured from different cameras.
arXiv Detail & Related papers (2024-09-26T18:34:37Z) - Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.
We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.
We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - DemosaicFormer: Coarse-to-Fine Demosaicing Network for HybridEVS Camera [70.28702677370879]
Hybrid Event-Based Vision Sensor (HybridEVS) is a novel sensor integrating traditional frame-based and event-based sensors.
Despite its potential, the lack of Image signal processing (ISP) pipeline specifically designed for HybridEVS poses a significant challenge.
We propose a coarse-to-fine framework named DemosaicFormer which comprises coarse demosaicing and pixel correction.
arXiv Detail & Related papers (2024-06-12T07:20:46Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
We tackle blind image super-resolution in the RAW domain.
We design a realistic degradation pipeline tailored specifically for training models with raw sensor data.
Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality.
arXiv Detail & Related papers (2023-12-24T14:17:28Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [63.54342601757723]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Overexposure Mask Fusion: Generalizable Reverse ISP Multi-Step
Refinement [10.186389326668305]
This paper presents a state-of-the-art solution to the task of RAW reconstruction.
Instead of from RGB to bayer, the pipeline trains from RGB to demosaiced RAW allowing use of perceptual loss functions.
arXiv Detail & Related papers (2022-10-20T18:21:41Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction.
We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation.
arXiv Detail & Related papers (2022-10-20T10:43:53Z) - RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional
Neural Network [23.451063587138393]
We propose a Raw Burst Super-Resolution Iterative Convolutional Neural Network (RBSRICNN)
The proposed network produces the final output by an iterative refinement of the intermediate SR estimates.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2021-10-25T19:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.