MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation
- URL: http://arxiv.org/abs/2404.02790v1
- Date: Wed, 3 Apr 2024 14:58:00 GMT
- Title: MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation
- Authors: Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Fei Chen, Steven McDonagh, Gerasimos Lampouras, Ignacio Iacobacci, Sarah Parisot,
- Abstract summary: We introduce MuLAn: a novel dataset comprising over 44K MUlti-Layer-wise RGBA decompositions.
MuLAn is the first photorealistic resource providing instance decomposition and spatial information for high quality images.
We aim to encourage the development of novel generation and editing technology, in particular layer-wise solutions.
- Score: 54.64194935409982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image generation has achieved astonishing results, yet precise spatial controllability and prompt fidelity remain highly challenging. This limitation is typically addressed through cumbersome prompt engineering, scene layout conditioning, or image editing techniques which often require hand drawn masks. Nonetheless, pre-existing works struggle to take advantage of the natural instance-level compositionality of scenes due to the typically flat nature of rasterized RGB output images. Towards adressing this challenge, we introduce MuLAn: a novel dataset comprising over 44K MUlti-Layer ANnotations of RGB images as multilayer, instance-wise RGBA decompositions, and over 100K instance images. To build MuLAn, we developed a training free pipeline which decomposes a monocular RGB image into a stack of RGBA layers comprising of background and isolated instances. We achieve this through the use of pretrained general-purpose models, and by developing three modules: image decomposition for instance discovery and extraction, instance completion to reconstruct occluded areas, and image re-assembly. We use our pipeline to create MuLAn-COCO and MuLAn-LAION datasets, which contain a variety of image decompositions in terms of style, composition and complexity. With MuLAn, we provide the first photorealistic resource providing instance decomposition and occlusion information for high quality images, opening up new avenues for text-to-image generative AI research. With this, we aim to encourage the development of novel generation and editing technology, in particular layer-wise solutions. MuLAn data resources are available at https://MuLAn-dataset.github.io/.
Related papers
- Generating Compositional Scenes via Text-to-image RGBA Instance Generation [82.63805151691024]
Text-to-image diffusion generative models can generate high quality images at the cost of tedious prompt engineering.
We propose a novel multi-stage generation paradigm that is designed for fine-grained control, flexibility and interactivity.
Our experiments show that our RGBA diffusion model is capable of generating diverse and high quality instances with precise control over object attributes.
arXiv Detail & Related papers (2024-11-16T23:44:14Z) - Scene Graph Disentanglement and Composition for Generalizable Complex Image Generation [44.457347230146404]
We leverage the scene graph, a powerful structured representation, for complex image generation.
We employ the generative capabilities of variational autoencoders and diffusion models in a generalizable manner.
Our method outperforms recent competitors based on text, layout, or scene graph.
arXiv Detail & Related papers (2024-10-01T07:02:46Z) - CtxMIM: Context-Enhanced Masked Image Modeling for Remote Sensing Image Understanding [38.53988682814626]
We propose a context-enhanced masked image modeling method (CtxMIM) for remote sensing image understanding.
CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches.
With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset.
arXiv Detail & Related papers (2023-09-28T18:04:43Z) - LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image
Generation [121.45667242282721]
We propose a coarse-to-fine paradigm to achieve layout planning and image generation.
Our proposed method outperforms the state-of-the-art models in terms of photorealistic layout and image generation.
arXiv Detail & Related papers (2023-08-09T17:45:04Z) - iEdit: Localised Text-guided Image Editing with Weak Supervision [53.082196061014734]
We propose a novel learning method for text-guided image editing.
It generates images conditioned on a source image and a textual edit prompt.
It shows favourable results against its counterparts in terms of image fidelity, CLIP alignment score and qualitatively for editing both generated and real images.
arXiv Detail & Related papers (2023-05-10T07:39:14Z) - Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid [102.24539566851809]
Restoring reasonable and realistic content for arbitrary missing regions in images is an important yet challenging task.
Recent image inpainting models have made significant progress in generating vivid visual details, but they can still lead to texture blurring or structural distortions.
We propose the Semantic Pyramid Network (SPN) motivated by the idea that learning multi-scale semantic priors can greatly benefit the recovery of locally missing content in images.
arXiv Detail & Related papers (2021-12-08T04:33:33Z) - Using latent space regression to analyze and leverage compositionality
in GANs [33.381584322411626]
We investigate regression into the latent space as a probe to understand the compositional properties of GANs.
We find that combining the regressor and a pretrained generator provides a strong image prior, allowing us to create composite images.
We find that the regression approach enables more localized editing of individual image parts compared to direct editing in the latent space.
arXiv Detail & Related papers (2021-03-18T17:58:01Z) - Bridging Composite and Real: Towards End-to-end Deep Image Matting [88.79857806542006]
We study the roles of semantics and details for image matting.
We propose a novel Glance and Focus Matting network (GFM), which employs a shared encoder and two separate decoders.
Comprehensive empirical studies have demonstrated that GFM outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-10-30T10:57:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.