CtxMIM: Context-Enhanced Masked Image Modeling for Remote Sensing Image Understanding
- URL: http://arxiv.org/abs/2310.00022v4
- Date: Wed, 22 May 2024 01:58:20 GMT
- Title: CtxMIM: Context-Enhanced Masked Image Modeling for Remote Sensing Image Understanding
- Authors: Mingming Zhang, Qingjie Liu, Yunhong Wang,
- Abstract summary: We propose a context-enhanced masked image modeling method (CtxMIM) for remote sensing image understanding.
CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches.
With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset.
- Score: 38.53988682814626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning representations through self-supervision on unlabeled data has proven highly effective for understanding diverse images. However, remote sensing images often have complex and densely populated scenes with multiple land objects and no clear foreground objects. This intrinsic property generates high object density, resulting in false positive pairs or missing contextual information in self-supervised learning. To address these problems, we propose a context-enhanced masked image modeling method (CtxMIM), a simple yet efficient MIM-based self-supervised learning for remote sensing image understanding. CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches. A context-enhanced generative branch is introduced to provide contextual information through context consistency constraints in the reconstruction. With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset without specific temporal or geographical constraints. Finally, extensive experiments show that features learned by CtxMIM outperform fully supervised and state-of-the-art self-supervised learning methods on various downstream tasks, including land cover classification, semantic segmentation, object detection, and instance segmentation. These results demonstrate that CtxMIM learns impressive remote sensing representations with high generalization and transferability. Code and data will be made public available.
Related papers
- Masked Image Modeling Boosting Semi-Supervised Semantic Segmentation [38.55611683982936]
We introduce a novel class-wise masked image modeling that independently reconstructs different image regions according to their respective classes.
We develop a feature aggregation strategy that minimizes the distances between features corresponding to the masked and visible parts within the same class.
In semantic space, we explore the application of masked image modeling to enhance regularization.
arXiv Detail & Related papers (2024-11-13T16:42:07Z) - Pattern Integration and Enhancement Vision Transformer for Self-Supervised Learning in Remote Sensing [11.626527403157922]
We present the Pattern Integration and Enhancement Vision Transformer (PIEViT), a novel self-supervised learning framework for remote sensing imagery.
PIEViT enhances the representation of internal patch features, providing significant improvements over existing self-supervised baselines.
It achieves excellent results in object detection, land cover classification, and change detection, underscoring its robustness, generalization, and transferability for remote sensing image interpretation tasks.
arXiv Detail & Related papers (2024-11-09T07:06:31Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level.
We propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE)
BTMAE learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level.
arXiv Detail & Related papers (2023-11-29T07:33:38Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Multi-Spectral Image Classification with Ultra-Lean Complex-Valued
Models [28.798100220715686]
Multi-spectral imagery is invaluable for remote sensing due to different spectral signatures exhibited by materials.
We apply complex-valued co-domain symmetric models to classify real-valued MSI images.
Our work is the first to demonstrate the value of complex-valued deep learning on real-valued MSI data.
arXiv Detail & Related papers (2022-11-21T19:01:53Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - The Devil is in the Frequency: Geminated Gestalt Autoencoder for
Self-Supervised Visual Pre-Training [13.087987450384036]
We present a new Masked Image Modeling (MIM), termed Geminated Autoencoder (Ge$2$-AE) for visual pre-training.
Specifically, we equip our model with geminated decoders in charge of reconstructing image contents from both pixel and frequency space.
arXiv Detail & Related papers (2022-04-18T09:22:55Z) - Adversarial Masking for Self-Supervised Learning [81.25999058340997]
Masked image model (MIM) framework for self-supervised learning, ADIOS, is proposed.
It simultaneously learns a masking function and an image encoder using an adversarial objective.
It consistently improves on state-of-the-art self-supervised learning (SSL) methods on a variety of tasks and datasets.
arXiv Detail & Related papers (2022-01-31T10:23:23Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.