AI and personalized learning: bridging the gap with modern educational goals
- URL: http://arxiv.org/abs/2404.02798v2
- Date: Fri, 21 Mar 2025 07:03:09 GMT
- Title: AI and personalized learning: bridging the gap with modern educational goals
- Authors: Kristjan-Julius Laak, Jaan Aru,
- Abstract summary: Technology-based personalized learning (PL) solutions have shown notable effectiveness in enhancing learning performance.<n>Our analysis indicates a gap between the objectives of modern education and the technological approach to PL.<n>We propose a hybrid model that blends artificial intelligence with a collaborative, teacher-facilitated approach to personalized learning.
- Score: 1.1510009152620668
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Personalized learning (PL) aspires to provide an alternative to the one-size-fits-all approach in education. Technology-based PL solutions have shown notable effectiveness in enhancing learning performance. However, their alignment with the broader goals of modern education is inconsistent across technologies and research areas. In this paper, we examine the characteristics of AI-driven PL solutions in light of the goals outlined in the OECD Learning Compass 2030. Our analysis indicates a gap between the objectives of modern education and the technological approach to PL. We identify areas where the AI-based PL solutions could embrace essential elements of contemporary education, such as fostering learner's agency, cognitive engagement, and general competencies. While the PL solutions that narrowly focus on domain-specific knowledge acquisition are instrumental in aiding learning processes, the PL envisioned by educational experts extends beyond simple technological tools and requires a holistic change in the educational system. Finally, we explore the potential of generative AI, such as ChatGPT, and propose a hybrid model that blends artificial intelligence with a collaborative, teacher-facilitated approach to personalized learning.
Related papers
- Advancing Education through Tutoring Systems: A Systematic Literature Review [3.276010440333338]
This study systematically reviews the transformative role of Tutoring Systems, encompassing Intelligent Tutoring Systems (ITS) and Robot Tutoring Systems (RTS)
The findings reveal significant advancements in AI techniques that enhance adaptability, engagement, and learning outcomes.
The study highlights the complementary strengths of ITS and RTS, proposing integrated hybrid solutions to maximize educational benefits.
arXiv Detail & Related papers (2025-03-12T18:47:07Z) - SocratiQ: A Generative AI-Powered Learning Companion for Personalized Education and Broader Accessibility [6.850805347542054]
We present SocratiQ, an AI-powered educational assistant that implements the Socratic method through adaptive learning technologies.
The system employs a novel Generative AI-based learning framework that dynamically creates personalized learning pathways based on student responses and comprehension patterns.
arXiv Detail & Related papers (2025-02-01T06:59:54Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Qualitative and quantitative analysis of student's perceptions in the use of generative AI in educational environments [0.0]
The effective integration of generative artificial intelligence in education is a fundamental aspect to prepare future generations.
The objective of this study is to analyze from a quantitative and qualitative point of view the perception of controlled student-IA interaction within the classroom.
arXiv Detail & Related papers (2024-05-22T09:56:05Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - Generative AI and Its Educational Implications [0.0]
We discuss the implications of generative AI on education across four critical sections.
We propose ways in which generative AI can transform the educational landscape.
Acknowledging the societal impact, we emphasize the need for updating curricula.
arXiv Detail & Related papers (2023-12-26T21:29:31Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.