論文の概要: Human Activity Recognition using Smartphones
- arxiv url: http://arxiv.org/abs/2404.02869v1
- Date: Wed, 3 Apr 2024 17:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 16:50:16.881371
- Title: Human Activity Recognition using Smartphones
- Title(参考訳): スマートフォンを用いた人間の活動認識
- Authors: Mayur Sonawane, Sahil Rajesh Dhayalkar, Siddesh Waje, Soyal Markhelkar, Akshay Wattamwar, Seema C. Shrawne,
- Abstract要約: 私たちは、日々の人間の活動を認識し、消費カロリーをリアルタイムで計算するAndroidアプリケーションを作成しました。
これは、メタボリック等価性に基づく式を用いて、リアルタイムな活動認識とカロリー燃焼の計算に使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human Activity Recognition is a subject of great research today and has its applications in remote healthcare, activity tracking of the elderly or the disables, calories burnt tracking etc. In our project, we have created an Android application that recognizes the daily human activities and calculate the calories burnt in real time. We first captured labeled triaxial acceleration readings for different daily human activities from the smartphone's embedded accelerometer. These readings were preprocessed using a median filter. 42 features were extracted using various methods. We then tested various machine learning algorithms along with dimensionality reduction. Finally, in our Android application, we used the machine learning algorithm and a subset of features that provided maximum accuracy and minimum model building time. This is used for real-time activity recognition and calculation of calories burnt using a formula based on Metabolic Equivalent.
- Abstract(参考訳): ヒトのアクティビティ認識は、今日の大きな研究対象であり、遠隔医療、高齢者のアクティビティトラッキング、障害、カロリーのバーントトラッキングなどに応用されている。
このプロジェクトでは,日々の人間の活動を認識し,消費カロリーをリアルタイムで計算するAndroidアプリケーションを開発した。
まず,スマートフォンの加速度計を用いた3軸加速度測定を行った。
これらの読み出しは中央値フィルタを用いて前処理した。
様々な方法で42の特徴を抽出した。
次に、次元削減とともに、さまざまな機械学習アルゴリズムをテストした。
最後に、Androidアプリケーションでは、機械学習アルゴリズムと、最大精度と最小モデル構築時間を提供する機能のサブセットを使用しました。
これは、メタボリック等価性に基づく式を用いて、リアルタイムな活動認識とカロリー燃焼の計算に使用される。
関連論文リスト
- Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
本研究は, 深層建築を用いて異なる活動を行う人間の記録から, 個人とソフトバイオメトリックスを同定する。
マルチチャネル時系列ヒューマンアクティビティ認識(HAR)の4つのデータセットに対する手法の評価を行った。
ソフトバイオメトリクスに基づく属性表現は、有望な結果を示し、より大きなデータセットの必要性を強調している。
論文 参考訳(メタデータ) (2023-04-04T07:24:51Z) - RMBench: Benchmarking Deep Reinforcement Learning for Robotic
Manipulator Control [47.61691569074207]
強化学習は、高次元の感覚入力から実際の複雑なタスクを解決するために応用される。
生の知覚信号表現における深層学習の最近の進歩
ロボット操作のための最初のベンチマークであるRMBenchを紹介する。
論文 参考訳(メタデータ) (2022-10-20T13:34:26Z) - Information We Can Extract About a User From 'One Minute Mobile
Application Usage' [0.0]
本稿では,アンドロイドスマートフォンの加速度計,磁力計,ジャイロセンサを用いて,さまざまな人間の活動を抽出した。
Facebook、Instagram、Whatsapp、Twitterなど、さまざまなソーシャルメディアアプリケーションを使用して、19ドルの被験者の属性とともに、生のセンサー値を抽出しました。
生信号から特徴を抽出し、異なる機械学習(ML)アルゴリズムを用いて分類を行う。
論文 参考訳(メタデータ) (2022-07-27T00:23:11Z) - Classifying Human Activities using Machine Learning and Deep Learning
Techniques [0.0]
HAR(Human Activity Recognition)は、人間の行動を認識する機械。
HARの課題は、与えられたデータに基づいて人間の活動を分離することの難しさを克服することである。
Long Short-Term Memory(LSTM)、Bi-Directional LS分類器、Recurrent Neural Network(RNN)、Gated Recurrent Unit(GRU)といったディープラーニング技術がトレーニングされている。
実験の結果、機械学習における線形サポートベクトルとディープラーニングにおけるGated Recurrent Unitが、人間の活動認識により良い精度を提供することがわかった。
論文 参考訳(メタデータ) (2022-05-19T05:20:04Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
本研究は, 単モーダルおよび多モーダルな行動的生体特性の比較分析を行った。
HuMIdbは、最大かつ最も包括的なモバイルユーザインタラクションデータベースである。
我々の実験では、最も識別可能な背景センサーは磁力計であり、タッチタスクではキーストロークで最良の結果が得られる。
論文 参考訳(メタデータ) (2022-03-14T17:05:59Z) - HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly
Unlabeled Mobile Sensor Data [61.79595926825511]
正確な活動ラベルを含むバランスのとれたデータセットを取得するには、人間が正しく注釈を付け、リアルタイムで被験者の通常の活動に干渉する必要がある。
本研究では,HAR-GCCNモデルを提案する。HAR-GCCNは,時系列に隣接したセンサ測定の相関を利用して,不特定活動の正確なラベルを予測する。
Har-GCCNは、これまで使用されていたベースライン手法と比較して優れたパフォーマンスを示し、分類精度を25%改善し、異なるデータセットで最大68%向上した。
論文 参考訳(メタデータ) (2022-03-07T01:23:46Z) - HAKE: A Knowledge Engine Foundation for Human Activity Understanding [65.24064718649046]
人間の活動理解は人工知能に広く興味を持ち、医療や行動分析といった多様な応用にまたがっている。
本稿では,この課題を2段階にまとめた新しいパラダイムを提案する。まず,原子活動プリミティブを対象とする中間空間に画素をマッピングし,解釈可能な論理規則で検出されたプリミティブをプログラムして意味論を推論する。
我々のフレームワークであるHAKE(Human Activity Knowledge Engine)は、挑戦的なベンチマークよりも優れた一般化能力と性能を示す。
論文 参考訳(メタデータ) (2022-02-14T16:38:31Z) - Human Activity Recognition models using Limited Consumer Device Sensors
and Machine Learning [0.0]
ヒトの活動認識は、日常生活や医療環境における応用の増加とともに人気が高まっている。
本稿では,スマートフォンやスマートウォッチのセンサデータを用いた訓練に限定した各種モデルの発見について述べる。
結果は、スマートフォンとスマートウォッチのみから収集された限られたセンサーデータと、従来の機械学習の概念とアルゴリズムとを厳格に併用したモデルの可能性を示している。
論文 参考訳(メタデータ) (2022-01-21T06:54:05Z) - Physical Activity Recognition by Utilising Smartphone Sensor Signals [0.0]
本研究では,現代のスマートフォンでジャイロスコープと加速度センサによって記録された計6つの活動に対して,60人の被験者から2日間にわたる人的活動データを収集した。
提案手法は,4つの活動の識別において,98%の分類精度を達成した。
論文 参考訳(メタデータ) (2022-01-20T09:58:52Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
身体運動のオンライン予測のためのヒューマンアクティビティ認識(HAR)手法を提案する。
我々は,監視ソフトウェアを含むHARシステムと加速度計とジャイロスコープデータを収集するモバイルアプリケーションを開発する。
この研究で6つの漸進的学習アルゴリズムが採用され、オフラインのHARシステムの開発によく使用されるバッチ学習アルゴリズムと比較される。
論文 参考訳(メタデータ) (2021-09-20T11:33:09Z) - ZSTAD: Zero-Shot Temporal Activity Detection [107.63759089583382]
本研究では,ゼロショット時間的活動検出(ZSTAD)と呼ばれる新たなタスク設定を提案する。
このソリューションのアーキテクチャとして,R-C3Dに基づくエンドツーエンドのディープネットワークを設計する。
THUMOS14とCharadesデータセットの両方の実験は、目に見えない活動を検出するという点で有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-03-12T02:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。