論文の概要: Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models
- arxiv url: http://arxiv.org/abs/2404.02936v1
- Date: Wed, 3 Apr 2024 04:25:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 19:04:16.702726
- Title: Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models
- Title(参考訳): Min-K%++:大規模言語モデルから事前学習データを検出するための改善されたベースライン
- Authors: Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Yang, Hai Li,
- Abstract要約: 我々は,トークンの確率を,語彙全体のカテゴリ分布の統計値で正規化するMin-K%++を提案する。
WikiMIAベンチマークでは、Min-K%++はMin-K%を一貫して改善し、参照ベースのメソッドと同等に動作する。
- 参考スコア(独自算出の注目度): 16.795121204648023
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of pre-training data detection for large language models (LLMs) has received growing attention due to its implications in critical issues like copyright violation and test data contamination. The current state-of-the-art approach, Min-K%, measures the raw token probability which we argue may not be the most informative signal. Instead, we propose Min-K%++ to normalize the token probability with statistics of the categorical distribution over the whole vocabulary, which accurately reflects the relative likelihood of the target token compared with other candidate tokens in the vocabulary. Theoretically, we back up our method by showing that the statistic it estimates is explicitly optimized during LLM training, thus serving as a reliable indicator for detecting training data. Empirically, on the WikiMIA benchmark, Min-K%++ outperforms the SOTA Min-K% by 6.2% to 10.5% in detection AUROC averaged over five models. On the more challenging MIMIR benchmark, Min-K%++ consistently improves upon Min-K% and performs on par with reference-based method, despite not requiring an extra reference model.
- Abstract(参考訳): 大規模言語モデル(LLM)に対する事前学習データ検出の問題は、著作権侵害やテストデータ汚染といった重要な問題に影響を及ぼすため、注目を集めている。
現在の最先端のアプローチであるMin-K%は、最も有益な信号ではないと私たちが主張する生トークン確率を測定する。
代わりに、各語彙のカテゴリ分布の統計値を用いてトークン確率を正規化するMin-K%++を提案する。
理論的には、推定した統計値がLLMトレーニング中に明示的に最適化されることを示し、トレーニングデータを検出するための信頼性指標として機能する。
WikiMIAのベンチマークでは、Min-K%++は平均5モデル以上のAUROCの検出でSOTA Min-K%を6.2%から10.5%上回っている。
より挑戦的なMIMIRベンチマークでは、Min-K%++はMin-K%を継続的に改善し、参照モデルを必要としないにもかかわらず、参照ベースのメソッドと同等に動作する。
関連論文リスト
- Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - Towards Reliable AI Model Deployments: Multiple Input Mixup for
Out-of-Distribution Detection [4.985768723667418]
本稿では,OOD(Out-of-Distribution)検出問題の解法を提案する。
本手法は, 単一エポック微調整によるOOD検出性能の向上に有効である。
我々の方法は、ゼロからモデルを訓練する必要がなく、簡単に分類器にアタッチできる。
論文 参考訳(メタデータ) (2023-12-24T15:31:51Z) - Semi-Supervised Crowd Counting with Contextual Modeling: Facilitating Holistic Understanding of Crowd Scenes [19.987151025364067]
本稿では,信頼度の高い群集カウントモデルをトレーニングするための,新しい半教師付き手法を提案する。
モデルの本質的な'サブタイズ'能力を育み、領域の数を正確に見積もることができる。
提案手法は,従来の手法を,挑戦的ベンチマークにおいて大きな差で上回り,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-10-16T12:42:43Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Boosting Out-of-Distribution Detection with Multiple Pre-trained Models [41.66566916581451]
事前訓練されたモデルを用いたポストホック検出は有望な性能を示し、大規模にスケールできる。
本稿では,事前訓練されたモデルの動物園から抽出した複数の検出決定をアンサンブルすることで,検出強化手法を提案する。
CIFAR10 と ImageNet のベンチマークでは, 相対性能を 65.40% と 26.96% で大幅に改善した。
論文 参考訳(メタデータ) (2022-12-24T12:11:38Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Complementary Ensemble Learning [1.90365714903665]
我々は最先端のディープラーニングモデルの性能向上手法を考案した。
具体的には、最先端モデルの不確実性を補完できる補助モデルを訓練する。
論文 参考訳(メタデータ) (2021-11-09T03:23:05Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
補助モデルと付加データなしで問題を解くための学習パラダイムとして,ノイズエントロピー正規化(NoiER)を提案する。
提案手法は,従来の微調整モデルと比較して平均55%改善した。
論文 参考訳(メタデータ) (2021-08-29T06:58:28Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。