論文の概要: The SaTML '24 CNN Interpretability Competition: New Innovations for Concept-Level Interpretability
- arxiv url: http://arxiv.org/abs/2404.02949v1
- Date: Wed, 3 Apr 2024 17:56:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 18:54:31.474405
- Title: The SaTML '24 CNN Interpretability Competition: New Innovations for Concept-Level Interpretability
- Title(参考訳): SaTML '24 CNN解釈可能性コンペティション:概念レベル解釈性のための新しいイノベーション
- Authors: Stephen Casper, Jieun Yun, Joonhyuk Baek, Yeseong Jung, Minhwan Kim, Kiwan Kwon, Saerom Park, Hayden Moore, David Shriver, Marissa Connor, Keltin Grimes, Angus Nicolson, Arush Tagade, Jessica Rumbelow, Hieu Minh Nguyen, Dylan Hadfield-Menell,
- Abstract要約: SaTML 2024 CNN解釈可能性コンペティションは、ImageNetスケールで畳み込みニューラルネットワーク(CNN)を研究する新しい手法を募集した。
競争の目的は、人間の群衆労働者がCNNでトロイの木を識別できるようにすることであった。
本報告では,4つのコンペの実施方法と結果を紹介する。
- 参考スコア(独自算出の注目度): 8.610692317744556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability techniques are valuable for helping humans understand and oversee AI systems. The SaTML 2024 CNN Interpretability Competition solicited novel methods for studying convolutional neural networks (CNNs) at the ImageNet scale. The objective of the competition was to help human crowd-workers identify trojans in CNNs. This report showcases the methods and results of four featured competition entries. It remains challenging to help humans reliably diagnose trojans via interpretability tools. However, the competition's entries have contributed new techniques and set a new record on the benchmark from Casper et al., 2023.
- Abstract(参考訳): 解釈可能性技術は、人間がAIシステムを理解し、監督するのを助けるのに有用である。
SaTML 2024 CNN解釈可能性コンペティションは、ImageNetスケールで畳み込みニューラルネットワーク(CNN)を研究する新しい手法を募集した。
競争の目的は、人間の群衆労働者がCNNでトロイの木を識別できるようにすることであった。
本報告では,4つのコンペの実施方法と結果を紹介する。
人間が解釈可能なツールを使って確実にトロイの木馬を診断するのを助けることは依然として困難である。
しかし、コンペティションのエントリーは新たな技術に貢献し、2023年のCasperらによるベンチマークで新しい記録を樹立した。
関連論文リスト
- Trojan Detection in Large Language Models: Insights from The Trojan Detection Challenge [0.056247917037481096]
大規模言語モデル(LLM)は、様々な領域で顕著な機能を示しているが、トロイの木馬やバックドア攻撃に対する脆弱性は、重大なセキュリティリスクを引き起こす。
本稿では,トロイの木馬検出コンペティション2023(TDC2023)から得られた課題と知見について考察する。
本研究では,意図しないトリガーと意図しないトリガーの区別の難しさと,実世界のシナリオにおけるリバースエンジニアリングトロイの木馬の実現可能性について検討する。
論文 参考訳(メタデータ) (2024-04-21T13:31:16Z) - SynFacePAD 2023: Competition on Face Presentation Attack Detection Based
on Privacy-aware Synthetic Training Data [51.42380508231581]
バイオメトリックス国際会議(IJCB 2023)におけるプライバシ・アウェア・シンセティック・トレーニングデータ(SynFacePAD 2023)に基づく顔提示攻撃検出コンペティションの概要を述べる。
このコンペティションは、個人データに関連するプライバシー、法的、倫理的懸念に動機づけられた、合成ベースのトレーニングデータを考慮して、顔の提示攻撃を検出するソリューションを動機付け、誘致することを目的としている。
提案されたソリューションはイノベーションと新しいアプローチを示し、調査されたベンチマークで考慮されたベースラインを上回りました。
論文 参考訳(メタデータ) (2023-11-09T13:02:04Z) - First Three Years of the International Verification of Neural Networks
Competition (VNN-COMP) [9.02791567988691]
VNN-COMPでは、参加者が入力出力動作を記述する仕様を満たすニューラルネットワークを解析するソフトウェアツールを提出する。
我々は、重要なプロセス、ルール、成果を要約し、過去3年間に観察されたトレンドを概説し、将来の発展の可能性について展望を提供する。
論文 参考訳(メタデータ) (2023-01-14T04:04:12Z) - SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on
Privacy-aware Synthetic Training Data [8.020790315170853]
バイオメトリックス国際会議(IJCB 2022)におけるプライバシ・アウェア・シンセティック・トレーニングデータ(SYN-MAD)に基づく顔モフティング攻撃検出コンペティションの概要を述べる。
この大会には、学界と産業の両方から合計12の参加チームが参加し、11カ国で開催されている。
最終的に7つの有効な申請が参加チームによって提出され、主催者によって評価された。
論文 参考訳(メタデータ) (2022-08-15T17:06:55Z) - Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone
fine-tuning without episodic meta-learning dominates for few-shot learning
image classification [40.901760230639496]
本稿では,MetaDLコンペティションシリーズの設計,データセット,最良の実験結果,NeurIPS 2021チャレンジにおける最上位の手法について述べる。
トップ参加者のソリューションがオープンソース化された。
論文 参考訳(メタデータ) (2022-06-15T10:27:23Z) - Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free [126.15842954405929]
トロイの木馬攻撃はディープニューラルネットワーク(DNN)を脅かし、ほとんどのサンプルで正常に動作させるが、トリガーを付けた入力に対して操作された結果を生成する。
そこで我々は,まず,クリーンな入力において,ほぼ完全なトロイの木馬の情報のみを保存し,かつ,すでに孤立しているサブネットワークに埋め込まれたトリガを復元する,新しいトロイの木馬ネットワーク検出方式を提案する。
論文 参考訳(メタデータ) (2022-05-24T06:33:31Z) - Retrospective on the 2021 BASALT Competition on Learning from Human
Feedback [92.37243979045817]
競争の目的は、人間のフィードバック(LfHF)技術から学び、オープンワールドの課題を解決するエージェントへの研究を促進することであった。
LfHF技術の使用を義務付けるのではなく、ビデオゲームMinecraftで達成すべき自然言語の4つのタスクについて説明した。
チームは、様々な可能な人間のフィードバックタイプにまたがる多様なLfHFアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-04-14T17:24:54Z) - Adversarial Attacks on ML Defense Models Competition [82.37504118766452]
清華大学のTSAILグループとAlibaba Securityグループがこの競争を組織した。
この競争の目的は、敵の堅牢性を評価するために、新しい攻撃アルゴリズムを動機付けることである。
論文 参考訳(メタデータ) (2021-10-15T12:12:41Z) - The Second International Verification of Neural Networks Competition
(VNN-COMP 2021): Summary and Results [1.4824891788575418]
本報告では,第2回国際ニューラルネットワークコンペティション(VNN-COMP 2021)を要約する。
競争の目標は、ニューラルネットワークの検証における最先端の手法の客観的比較を提供することである。
このレポートでは、このコンペティションから学んだルール、ベンチマーク、参加ツール、結果、教訓を要約する。
論文 参考訳(メタデータ) (2021-08-31T01:29:56Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
畳み込みニューラルネットワークの欠点は、敵の攻撃に弱いことである。
本稿では, 良好な精度を有する背骨CNNの対角的堅牢性を向上させることを目的とする。
最小限の計算オーバーヘッドの下では、拡張アーキテクチャはバックボーンCNNの標準的な性能と親和性が期待できる。
論文 参考訳(メタデータ) (2021-08-16T03:58:00Z) - NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons
Learned [122.429985063391]
我々はNeurIPS 2020のEfficientQAコンペティションのモチベーションと組織について述べる。
コンペでは、システムは自然言語質問を入力として受け取り、自然言語応答を返すオープンドメイン質問応答(qa)に焦点を当てた。
論文 参考訳(メタデータ) (2021-01-01T01:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。