論文の概要: MeshBrush: Painting the Anatomical Mesh with Neural Stylization for Endoscopy
- arxiv url: http://arxiv.org/abs/2404.02999v1
- Date: Wed, 3 Apr 2024 18:40:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 18:44:36.524850
- Title: MeshBrush: Painting the Anatomical Mesh with Neural Stylization for Endoscopy
- Title(参考訳): MeshBrush: 内視鏡のための神経スチル化による解剖学的メッシュの塗装
- Authors: John J. Han, Ayberk Acar, Nicholas Kavoussi, Jie Ying Wu,
- Abstract要約: スタイルトランスファーは、医療内視鏡におけるシミュレートとリアルのギャップを埋めるための有望なアプローチである。
手術前のスキャンでリアルな内視鏡映像をレンダリングすると、リアルなシミュレーションや、地上の真相カメラのポーズ、深度マップが生成される。
本稿では、時間的に一貫した動画を異なるレンダリングで合成するニューラルネットワークスタイリング手法であるMeshBrushを提案する。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Style transfer is a promising approach to close the sim-to-real gap in medical endoscopy. Rendering realistic endoscopic videos by traversing pre-operative scans (such as MRI or CT) can generate realistic simulations as well as ground truth camera poses and depth maps. Although image-to-image (I2I) translation models such as CycleGAN perform well, they are unsuitable for video-to-video synthesis due to the lack of temporal consistency, resulting in artifacts between frames. We propose MeshBrush, a neural mesh stylization method to synthesize temporally consistent videos with differentiable rendering. MeshBrush uses the underlying geometry of patient imaging data while leveraging existing I2I methods. With learned per-vertex textures, the stylized mesh guarantees consistency while producing high-fidelity outputs. We demonstrate that mesh stylization is a promising approach for creating realistic simulations for downstream tasks such as training and preoperative planning. Although our method is tested and designed for ureteroscopy, its components are transferable to general endoscopic and laparoscopic procedures.
- Abstract(参考訳): スタイルトランスファーは、医療内視鏡におけるシミュレートとリアルのギャップを埋めるための有望なアプローチである。
手術前スキャン(MRIやCTなど)をトラバースすることで、リアルな内視鏡映像をレンダリングすることで、現実的なシミュレーションや、地上の真相カメラのポーズや深度マップを生成することができる。
CycleGANのようなイメージ・ツー・イメージ(I2I)翻訳モデルはよく機能するが、時間的一貫性の欠如によりビデオ・ツー・ビデオ合成には適さないため、フレーム間のアーティファクトが生じる。
本稿では、時間的に一貫した動画を異なるレンダリングで合成するニューラルネットワークスタイリング手法であるMeshBrushを提案する。
MeshBrushは、既存のI2Iメソッドを活用しながら、患者の画像データの基礎となる幾何学を使用している。
学習した頂点ごとのテクスチャにより、スタイリングされたメッシュは、高忠実度出力を生成しながら一貫性を保証する。
我々は、メッシュスタイリングが、トレーニングや事前作業計画といった下流タスクの現実的なシミュレーションを作成するための有望なアプローチであることを実証した。
本手法は尿管内視鏡検査に応用できるが, 一般的な内視鏡および腹腔鏡下手術に応用できる。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Mastoidectomy Multi-View Synthesis from a Single Microscopy Image [4.777201894011511]
単一CI顕微鏡画像から合成多視点映像を生成することができる新しいパイプラインを提案する。
本研究は, 術前CT検査を用いて, 乳頭切除後の表面を予測し, 本目的のために設計した方法である。
論文 参考訳(メタデータ) (2024-08-31T16:45:24Z) - EndoSparse: Real-Time Sparse View Synthesis of Endoscopic Scenes using Gaussian Splatting [39.60431471170721]
内視鏡画像からの生体組織の3次元再構成は, 様々な重要な下流外科的応用を3D機能で解き放つ鍵となる。
既存の手法では、ビュー合成に様々な高度なニューラルレンダリング技術を採用しているが、スパースな観察しかできない場合には、正確な3D表現の復元に苦慮することが多い。
再建過程において,複数の基盤モデルから事前の知識を活用するフレームワークを提案し,それをtextitEndoSparse と呼ぶ。
論文 参考訳(メタデータ) (2024-07-01T07:24:09Z) - Interactive Generation of Laparoscopic Videos with Diffusion Models [1.5488613349551188]
そこで本研究では,外科的動作をテキストで指定することで,現実的な腹腔鏡画像と映像を生成する方法について述べる。
我々は、Colecデータセットファミリを使用して、我々のアプローチの性能を実証する。
我々は38.097のFIDと0.71のF1スコアを達成する。
論文 参考訳(メタデータ) (2024-04-23T12:36:07Z) - Endora: Video Generation Models as Endoscopy Simulators [53.72175969751398]
本稿では,臨床内視鏡シーンをシミュレートする医用ビデオを作成するための革新的な手法であるモデルを紹介する。
また、ビデオ生成モデルを用いた内視鏡シミュレーションのための最初の公開ベンチマークを開拓した。
Endoraは、臨床内視鏡研究のための生成AIの展開において、注目すべきブレークスルーとなる。
論文 参考訳(メタデータ) (2024-03-17T00:51:59Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAMは、ハイブリッド表現を備えた新しいRGB-DセマンティックSLAMアプローチである。
本手法は画像に基づく特徴抽出と多視点幾何制約を統合し,外観の細部を改良する。
実験により, 合成データと実世界のデータ追跡の両面において, 最先端の性能が得られた。
論文 参考訳(メタデータ) (2023-11-30T21:34:44Z) - Realistic Endoscopic Image Generation Method Using Virtual-to-real
Image-domain Translation [1.1580916951856253]
内視鏡シミュレーションシステムのための現実的な画像生成手法を提案する。
患者のCTボリュームからボリュームレンダリング法を用いて仮想内視鏡画像を生成する。
仮想領域変換技術を用いて,仮想内視鏡画像の現実性を向上させる。
論文 参考訳(メタデータ) (2022-01-13T12:18:51Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z) - Long-Term Temporally Consistent Unpaired Video Translation from
Simulated Surgical 3D Data [0.059110875077162096]
本稿では,画像翻訳とニューラルレンダリングを併用して,写真リアルな腹部手術シーンにシミュレートする手法を提案する。
グローバル学習可能なテクスチャと照明不変のビューコンシスタンス損失を導入することにより,任意のビューの一貫した翻訳を生成する。
既存の画像ベース手法をビュー一貫性ビデオに拡張することにより,シミュレートされたトレーニングおよび手術用評価環境の適用性に影響を与えることを目指す。
論文 参考訳(メタデータ) (2021-03-31T16:31:26Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。