Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
- URL: http://arxiv.org/abs/2404.03010v2
- Date: Wed, 17 Jul 2024 10:46:41 GMT
- Title: Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
- Authors: Yannick Kirchhoff, Maximilian R. Rokuss, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo Wald, Maximilian Zenk, Philipp Vollmuth, Jens Kleesiek, Fabian Isensee, Klaus Maier-Hein,
- Abstract summary: Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision.
Standard deep learning-based segmentation loss functions, such as Dice or Cross-Entropy, focus on overlap, often at the expense of preserving structural connectivity or topology.
We propose a novel Skeleton Recall Loss, which effectively addresses these challenges by circumventing intensive GPU-based calculations with inexpensive CPU operations.
- Score: 2.0710692923459804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision. Standard deep learning-based segmentation loss functions, such as Dice or Cross-Entropy, focus on volumetric overlap, often at the expense of preserving structural connectivity or topology. This can lead to segmentation errors that adversely affect downstream tasks, including flow calculation, navigation, and structural inspection. Although current topology-focused losses mark an improvement, they introduce significant computational and memory overheads. This is particularly relevant for 3D data, rendering these losses infeasible for larger volumes as well as increasingly important multi-class segmentation problems. To mitigate this, we propose a novel Skeleton Recall Loss, which effectively addresses these challenges by circumventing intensive GPU-based calculations with inexpensive CPU operations. It demonstrates overall superior performance to current state-of-the-art approaches on five public datasets for topology-preserving segmentation, while substantially reducing computational overheads by more than 90%. In doing so, we introduce the first multi-class capable loss function for thin structure segmentation, excelling in both efficiency and efficacy for topology-preservation.
Related papers
- Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
Trends indicate that deeper and larger neural networks with an increasing number of parameters achieve higher accuracy than smaller neural networks.
We generalize structured pruning with algorithms for network augmentation, pruning, sub-network collapse and removal.
The resulting CNN executes efficiently on GPU hardware without computationally expensive sparse matrix operations.
arXiv Detail & Related papers (2023-08-28T14:19:13Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR [5.898114915426535]
Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration.
Most popular CNN-based methods are optimised using pixel wise loss functions, ignorant of the spatially extended features that characterise anatomy.
We extend these approaches to the task of multi-class segmentation by building an enriched topological description of all class labels and class label pairs.
arXiv Detail & Related papers (2021-07-27T09:21:38Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
We present a novel boundary-aware loss term for semantic segmentation using an inverse-transformation network.
This plug-in loss term complements the cross-entropy loss in capturing boundary transformations.
We analyze the quantitative and qualitative effects of our loss function on three indoor and outdoor segmentation benchmarks.
arXiv Detail & Related papers (2021-04-06T18:52:45Z) - Generic Perceptual Loss for Modeling Structured Output Dependencies [78.59700528239141]
We show that, what matters is the network structure instead of the trained weights.
We demonstrate that a randomly-weighted deep CNN can be used to model the structured dependencies of outputs.
arXiv Detail & Related papers (2021-03-18T23:56:07Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
We tackle model efficiency by exploiting redundancy in the textitimplicit structure of the building blocks of convolutional neural networks.
We show how this decomposition can be applied to 2D and 3D kernels as well as the fully-connected layers.
arXiv Detail & Related papers (2020-08-06T04:38:38Z) - An Elastic Interaction-Based Loss Function for Medical Image
Segmentation [10.851295591782538]
This paper introduces a long-range elastic interaction-based training strategy for medical image segmentation.
In this strategy, CNN learns the target region under the guidance of the elastic interaction energy between the boundary of the predicted region and that of the actual object.
Experimental results show that our method is able to achieve considerable improvements compared to commonly used pixel-wise loss functions.
arXiv Detail & Related papers (2020-07-06T11:49:14Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.