A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR
- URL: http://arxiv.org/abs/2107.12689v1
- Date: Tue, 27 Jul 2021 09:21:38 GMT
- Title: A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR
- Authors: Nick Byrne, James R Clough, Isra Valverde, Giovanni Montana, Andrew P
King
- Abstract summary: Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration.
Most popular CNN-based methods are optimised using pixel wise loss functions, ignorant of the spatially extended features that characterise anatomy.
We extend these approaches to the task of multi-class segmentation by building an enriched topological description of all class labels and class label pairs.
- Score: 5.898114915426535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a
separation of data into anatomical components with known structure and
configuration. The most popular CNN-based methods are optimised using pixel
wise loss functions, ignorant of the spatially extended features that
characterise anatomy. Therefore, whilst sharing a high spatial overlap with the
ground truth, inferred CNN-based segmentations can lack coherence, including
spurious connected components, holes and voids. Such results are implausible,
violating anticipated anatomical topology. In response, (single-class)
persistent homology-based loss functions have been proposed to capture global
anatomical features. Our work extends these approaches to the task of
multi-class segmentation. Building an enriched topological description of all
class labels and class label pairs, our loss functions make predictable and
statistically significant improvements in segmentation topology using a
CNN-based post-processing framework. We also present (and make available) a
highly efficient implementation based on cubical complexes and parallel
execution, enabling practical application within high resolution 3D data for
the first time. We demonstrate our approach on 2D short axis and 3D whole heart
CMR segmentation, advancing a detailed and faithful analysis of performance on
two publicly available datasets.
Related papers
- Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
We propose a general loss function for topologically faithful multi-class segmentation.
We project the N-class segmentation problem to N single-class segmentation tasks.
Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
arXiv Detail & Related papers (2024-03-16T19:11:57Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Understanding Imbalanced Semantic Segmentation Through Neural Collapse [81.89121711426951]
We show that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes.
We introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure.
Our method ranks 1st and sets a new record on the ScanNet200 test leaderboard.
arXiv Detail & Related papers (2023-01-03T13:51:51Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - Spatio-Temporal Representation Factorization for Video-based Person
Re-Identification [55.01276167336187]
We propose Spatio-Temporal Representation Factorization module (STRF) for re-ID.
STRF is a flexible new computational unit that can be used in conjunction with most existing 3D convolutional neural network architectures for re-ID.
We empirically show that STRF improves performance of various existing baseline architectures while demonstrating new state-of-the-art results.
arXiv Detail & Related papers (2021-07-25T19:29:37Z) - Weakly Supervised 3D Classification of Chest CT using Aggregated
Multi-Resolution Deep Segmentation Features [5.938730586521215]
Weakly supervised disease classification of CT imaging suffers from poor localization owing to case-level annotations.
We propose a medical classifier that leverages semantic structural concepts learned via multi-resolution segmentation feature maps.
arXiv Detail & Related papers (2020-10-31T00:16:53Z) - A persistent homology-based topological loss function for multi-class
CNN segmentation of cardiac MRI [7.993897173085253]
We build a richer description of segmentation topology by considering all possible labels and label pairs.
These topological priors allow us to resolve all topological errors in a subset of 150 examples from the ACDC short axis CMR training data set.
arXiv Detail & Related papers (2020-08-21T17:09:13Z) - Adaptive feature recombination and recalibration for semantic
segmentation with Fully Convolutional Networks [57.64866581615309]
We propose recombination of features and a spatially adaptive recalibration block that is adapted for semantic segmentation with Fully Convolutional Networks.
Results indicate that Recombination and Recalibration improve the results of a competitive baseline, and generalize across three different problems.
arXiv Detail & Related papers (2020-06-19T15:45:03Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.