論文の概要: Blessing or curse? A survey on the Impact of Generative AI on Fake News
- arxiv url: http://arxiv.org/abs/2404.03021v1
- Date: Wed, 3 Apr 2024 19:14:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 18:44:36.504880
- Title: Blessing or curse? A survey on the Impact of Generative AI on Fake News
- Title(参考訳): 祝福か呪いか?Fake Newsにおける生成AIの影響に関する調査
- Authors: Alexander Loth, Martin Kappes, Marc-Oliver Pahl,
- Abstract要約: 現在、高品質で個別にターゲットとするフェイクニュースのマス作成を自動化することが可能である。
この調査は、2024年のフェイクニュースの検出と作成のためのジェネレーティブAIの研究と実用化に関する総合的な調査を提供する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fake news significantly influence our society. They impact consumers, voters, and many other societal groups. While Fake News exist for a centuries, Generative AI brings fake news on a new level. It is now possible to automate the creation of masses of high-quality individually targeted Fake News. On the other end, Generative AI can also help detecting Fake News. Both fields are young but developing fast. This survey provides a comprehensive examination of the research and practical use of Generative AI for Fake News detection and creation in 2024. Following the Structured Literature Survey approach, the paper synthesizes current results in the following topic clusters 1) enabling technologies, 2) creation of Fake News, 3) case study social media as most relevant distribution channel, 4) detection of Fake News, and 5) deepfakes as upcoming technology. The article also identifies current challenges and open issues.
- Abstract(参考訳): フェイクニュースは私たちの社会に大きな影響を与えます。
消費者、有権者、その他多くの社会団体に影響を与える。
Fake Newsは数世紀にわたって存在しているが、Generative AIはフェイクニュースを新しいレベルでもたらす。
現在、高品質で個別にターゲットとするフェイクニュースのマス作成を自動化することが可能である。
一方、Generative AIはFake Newsの検出にも役立ちます。
両方の畑は若いが、急速に発達している。
この調査は、2024年のフェイクニュースの検出と作成のためのジェネレーティブAIの研究と実用化に関する総合的な調査を提供する。
構造化文献調査(Structured Literature Survey)のアプローチに続いて,本論文は以下のトピッククラスタにおける現在の結果を合成する。
1)技術の実現。
2)フェイクニュースの作成
3)最も関連する流通チャネルとしてのソーシャルメディアのケーススタディ。
4)フェイクニュースの検出、及び
5) 今後の技術としてのディープフェイク。
この記事は、現在の課題とオープンな課題も挙げている。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Fake News Detection and Behavioral Analysis: Case of COVID-19 [0.22940141855172028]
パンデミックに関する偽ニュースの拡散による「情報デミック」が世界的な問題となっている。
読者は偽ニュースを本当のニュースと間違える可能性があり、その結果、本物の情報にアクセスできなくなる。
ソーシャルメディアの投稿で偽のニュースデータを正確に識別することは困難である。
論文 参考訳(メタデータ) (2023-05-25T13:42:08Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - FALSE: Fake News Automatic and Lightweight Solution [0.20999222360659603]
本稿では,現代のフェイクニュースデータセットの研究と可視化にR符号を用いた。
クラスタリング、分類、相関、およびさまざまなプロットを使用してデータを分析し、提示する。
論文 参考訳(メタデータ) (2022-08-16T11:53:30Z) - Towards Smart Fake News Detection Through Explainable AI [1.160208922584163]
今や人々はソーシャルメディアサイトを、その人気のために唯一の情報ソースと見なしている。
本稿では,現在のAIを用いたフェイクニュース検出モデルにおける落とし穴について論じ,マルチモーダルな説明可能なフェイクニュース検出モデルについて検討する。
論文 参考訳(メタデータ) (2022-07-23T10:48:45Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Combining Machine Learning with Knowledge Engineering to detect Fake
News in Social Networks-a survey [0.7120858995754653]
ニュースメディアやソーシャルメディアでは、情報は高速に拡散されるが、正確性がないため、検出メカニズムは偽ニュースの拡散に対処するのに十分な速さでニュースを予測することができる。
本稿では,フェイクニュースとは何か,フェイクニュースの重要性,さまざまな領域におけるフェイクニュースの全体的影響,ソーシャルメディア上でフェイクニュースを検出するさまざまな方法,問題を克服する上で有効な既存の検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-20T07:43:15Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - How does Truth Evolve into Fake News? An Empirical Study of Fake News
Evolution [55.27685924751459]
偽ニュース進化過程を追跡する新しいデータセットであるフェイクニュース進化データセットを提示する。
私たちのデータセットは950のペアデータで構成され、それぞれが真実、偽ニュース、進化した偽ニュースを表す記事で構成されています。
進化中の特徴を観察し,誤情報技術,テキスト類似性,キーワードトップ10,分類精度,発話部分,感情特性について検討した。
論文 参考訳(メタデータ) (2021-03-10T09:01:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。