論文の概要: Linear Anchored Gaussian Mixture Model for Location and Width Computation of Objects in Thick Line Shape
- arxiv url: http://arxiv.org/abs/2404.03043v1
- Date: Wed, 3 Apr 2024 20:05:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 16:44:51.931661
- Title: Linear Anchored Gaussian Mixture Model for Location and Width Computation of Objects in Thick Line Shape
- Title(参考訳): 厚線形状における物体の位置と幅の計算のための線形アンコールガウス混合モデル
- Authors: Nafaa Nacereddine, Djemel Ziou, Aicha Baya Goumeidane,
- Abstract要約: 統計的分布の有限混合モデルとして、画像グレーレベルの3次元表現を考慮し、画像中の線形構造を検出することを目的とする。
混合モデルパラメータ推定には期待最大化アルゴリズムを用いる。
実世界の画像と合成画像のぼかしと付加音による劣化実験は,提案手法の優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.7205106391379021
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: An accurate detection of the centerlines of linear objects is a challenging topic in many sensitive real-world applications such X-ray imaging, remote sensing and lane marking detection in road traffic. Model-based approaches using Hough and Radon transforms are often used but, are not recommended for thick line detection, whereas approaches based on image derivatives need further step-by-step processing, making their efficiency dependent on each step outcomes. In this paper, we aim to detect linear structures found in images by considering the 3D representation of the image gray levels as a finite mixture model of statistical distribution. The latter, which we named linear anchored Gaussian distribution could be parametrized by a scale value {\sigma} describing the linear structure thickness and a line equation, parametrized, in turn, by a radius \r{ho} and an orientation angle {\theta}, describing the linear structure centerline location. Expectation-Maximization (EM) algorithm is used for the mixture model parameter estimation, where a new paradigm, using the background subtraction for the likelihood function computation, is proposed. For the EM algorithm, two {\theta} parameter initialization schemes are used: the first one is based on a random choice of the first component of {\theta} vector, whereas the second is based on the image Hessian with a simultaneous computation of the mixture model components number. Experiments on real world images and synthetic images corrupted by blur and additive noise show the good performance of the proposed methods, where the algorithm using background subtraction and Hessian-based {\theta} initialization provides an outstanding accuracy of the linear structure detection despite irregular image background and presence of blur and noise.
- Abstract(参考訳): 線形物体の中心線を正確に検出することは、道路交通におけるX線イメージング、リモートセンシング、レーンマーキング検出といった多くのセンシティブな現実世界のアプリケーションにおいて難しいトピックである。
Hough と Radon 変換を用いたモデルベースアプローチはよく用いられるが、厚みのある線検出には推奨されない。
本稿では,画像の灰色レベルの3次元表現を統計的分布の有限混合モデルとして考慮し,画像中の線形構造を検出することを目的とする。
後者は、線形構造の厚さを記述するスケール値 {\sigma} と、線形構造の中心位置を記述する方向角 {\theta} と半径 \r{ho} によってパラメータ化されるライン方程式によってパラメータ化することができる。
予測最大化 (EM) アルゴリズムを混合モデルパラメータ推定に用いて, 確率関数計算のバックグラウンドサブトラクションを用いた新しいパラダイムを提案する。
EMアルゴリズムでは、第1のパラメータ初期化スキームは、第1のパラメータベクトルの第1成分のランダムな選択に基づいており、第2のパラメータ初期化スキームは混合モデル成分数の同時計算による画像ヘシアンに基づいている。
実世界の画像と合成画像のぼかしと加法雑音による劣化実験により提案手法の優れた性能が示され,不規則な画像背景とぼかしとノイズの存在にもかかわらず,背景部分抽出とHessian-based {\theta}初期化を用いたアルゴリズムにより線形構造検出の精度が著しく向上した。
関連論文リスト
- Generalization of pixel-wise phase estimation by CNN and improvement of
phase-unwrapping by MRF optimization for one-shot 3D scan [0.621405559652172]
シングルパターンプロジェクション(ワンショット3Dスキャン)を用いたアクティブステレオ技術は、産業や医療目的などから広く注目を集めている。
ワンショット3Dスキャンの深刻な欠点はスパース再構成である。
パターンが正規かつ周期的であれば,任意のタイプの静的パターンに適用可能なワンショットスキャンのための画素ワイズ手法を提案する。
論文 参考訳(メタデータ) (2023-09-26T10:45:04Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
本研究では,3次元点雲から勾配ベクトルを一貫した向きで学習し,正規推定を行うためのディープラーニング手法を提案する。
局所平面幾何に基づいて角距離場を学習し、粗勾配ベクトルを洗練する。
本手法は,局所特徴記述の精度と能力の一般化を図りながら,グローバル勾配近似を効率的に行う。
論文 参考訳(メタデータ) (2023-09-17T08:35:11Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
本稿では,スコア関数を先行生成関数とする高速化されたWirtinger Flow (AWF) を用いた新しいアルゴリズム"AWFS"を提案する。
PRの対数様関数の勾配を計算し、リプシッツ定数を決定する。
本稿では,提案アルゴリズムの臨界点収束保証を確立する理論的解析を行う。
論文 参考訳(メタデータ) (2023-05-12T18:08:47Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
非視線イメージング(NLOS)は、視線で測定されたデータから3次元の隠れたシーンを再構築することを目的としている。
曲率正規化に基づく新しいNLOS再構成モデルを提案する。
提案したアルゴリズムを,合成データセットと実データセットの両方で評価する。
論文 参考訳(メタデータ) (2023-01-01T14:10:43Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA [0.0]
本稿では,ベイズ推定の観点から,新しい非パラメトリック雑音低減手法について述べる。
データのスムーズなバージョン、スムーズなモデルを繰り返し評価し、基礎となる信号の推定値を得る。
繰り返しは、最後の滑らかなモデルの証拠と$chi2$統計に基づいて停止し、信号の期待値を計算する。
論文 参考訳(メタデータ) (2022-01-13T18:54:31Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - Real-time Dense Reconstruction of Tissue Surface from Stereo Optical
Video [10.181846237133167]
立体光学ビデオから組織表面の高密度3次元モデル(3次元)をリアルタイムに再構成する手法を提案する。
まずステレオマッチングを用いてビデオフレームから3D情報を抽出し,再構成した3Dモデルをモザイクする。
2mm未満の精度で高分解能テクスチャを有する復元3Dモデルについて, 生体内および生体内データによる実験結果を得た。
論文 参考訳(メタデータ) (2020-07-16T19:14:05Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
ディープニューラルネットワークモデルの属性方法としての統合グラディエントは、シンプルな実装性を提供する。
理解しやすさに影響を及ぼす説明のうるささに悩まされる。
SmoothGrad法は,ノイズ問題を解消し,勾配に基づく帰属法の帰属写像を円滑化するために提案される。
論文 参考訳(メタデータ) (2020-04-22T10:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。