論文の概要: Many-to-many Image Generation with Auto-regressive Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.03109v1
- Date: Wed, 3 Apr 2024 23:20:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 16:12:59.510697
- Title: Many-to-many Image Generation with Auto-regressive Diffusion Models
- Title(参考訳): 自己回帰拡散モデルを用いた多対多画像生成
- Authors: Ying Shen, Yizhe Zhang, Shuangfei Zhai, Lifu Huang, Joshua M. Susskind, Jiatao Gu,
- Abstract要約: 本稿では,与えられた画像集合から関連画像系列を生成可能な多対多画像生成のためのドメイン汎用フレームワークを提案する。
我々は,25個の相互接続された画像を含む12Mの合成マルチイメージサンプルを含む,新しい大規模マルチイメージデータセットMISを提案する。
我々はM2Mを学習し、M2Mは多対多生成のための自己回帰モデルであり、各画像は拡散フレームワーク内でモデル化される。
- 参考スコア(独自算出の注目度): 59.5041405824704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in image generation have made significant progress, yet existing models present limitations in perceiving and generating an arbitrary number of interrelated images within a broad context. This limitation becomes increasingly critical as the demand for multi-image scenarios, such as multi-view images and visual narratives, grows with the expansion of multimedia platforms. This paper introduces a domain-general framework for many-to-many image generation, capable of producing interrelated image series from a given set of images, offering a scalable solution that obviates the need for task-specific solutions across different multi-image scenarios. To facilitate this, we present MIS, a novel large-scale multi-image dataset, containing 12M synthetic multi-image samples, each with 25 interconnected images. Utilizing Stable Diffusion with varied latent noises, our method produces a set of interconnected images from a single caption. Leveraging MIS, we learn M2M, an autoregressive model for many-to-many generation, where each image is modeled within a diffusion framework. Throughout training on the synthetic MIS, the model excels in capturing style and content from preceding images - synthetic or real - and generates novel images following the captured patterns. Furthermore, through task-specific fine-tuning, our model demonstrates its adaptability to various multi-image generation tasks, including Novel View Synthesis and Visual Procedure Generation.
- Abstract(参考訳): 最近の画像生成の進歩は大きな進歩を遂げているが、既存のモデルでは、広い文脈で任意の数の関連画像の知覚と生成に制限がある。
マルチメディアプラットフォームの拡大に伴い、マルチビューイメージやビジュアルナラティブといったマルチイメージシナリオの需要が増大するにつれて、この制限はますます重要になる。
本稿では,画像の集合から相互関連画像系列を生成可能な多対多画像生成のためのドメイン汎用フレームワークを提案し,多様なマルチイメージシナリオにまたがるタスク固有ソリューションの必要性を回避できるスケーラブルなソリューションを提供する。
これを容易にするために,25個の相互接続された画像を持つ12Mの合成マルチイメージサンプルを含む,新しい大規模マルチイメージデータセットMISを提案する。
遅延雑音の異なる安定拡散を利用して、1つのキャプションから一組の相互接続画像を生成する。
MISを活用することで、多対多生成のための自己回帰モデルであるM2Mを学び、各画像は拡散フレームワーク内でモデル化される。
合成MISのトレーニングを通じて、モデルは、先行画像(合成または実画像)からスタイルと内容を抽出し、キャプチャされたパターンに従って新しい画像を生成する。
さらに,タスク固有の微調整により,新しいビュー合成やビジュアルプロシージャ生成など,様々なマルチイメージ生成タスクへの適応性を示す。
関連論文リスト
- MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
本稿では,MMAR(Multi-Modal Auto-Regressive)確率モデルフレームワークを提案する。
離散化の手法とは異なり、MMARは情報損失を避けるために連続的に評価された画像トークンを取り入れる。
MMARは他のジョイントマルチモーダルモデルよりもはるかに優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T17:57:18Z) - TIE: Revolutionizing Text-based Image Editing for Complex-Prompt Following and High-Fidelity Editing [23.51498634405422]
マルチモーダルな大言語モデルの頑健な推論とローカライズ機能を活用した,革新的な画像編集フレームワークを提案する。
提案モデルでは,複雑なプロンプトを理解し,対応する画像を生成する能力が向上し,生成前後の画像の忠実度と一貫性が向上した。
論文 参考訳(メタデータ) (2024-05-27T03:50:37Z) - MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer [106.79844459065828]
本稿では,画像テキストデータのエンドツーエンド生成モデルであるMM-Interleavedを提案する。
マルチスケールおよびマルチイメージ機能同期モジュールを導入し、以前のコンテキストできめ細かい画像機能に直接アクセスできるようにする。
MM-Interleavedはマルチモーダルな指示に従って視覚的詳細を認識し、テキストと視覚の両方の条件に従って一貫した画像を生成する。
論文 参考訳(メタデータ) (2024-01-18T18:50:16Z) - Instruct-Imagen: Image Generation with Multi-modal Instruction [90.04481955523514]
Instruct-imagenは、不均一な画像生成タスクに取り組み、目に見えないタスクを一般化するモデルである。
画像生成のための*multi-modal instruction*を導入する。
画像生成データセットの人間による評価では、インストラクション・イメージはドメイン内の以前のタスク固有のモデルと一致するか、超えている。
論文 参考訳(メタデータ) (2024-01-03T19:31:58Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - Generating Images with Multimodal Language Models [78.6660334861137]
本稿では,凍結したテキストのみの大規模言語モデルを,事前学習した画像エンコーダとデコーダモデルで融合する手法を提案する。
本モデルでは,画像検索,新しい画像生成,マルチモーダル対話など,多モーダルな機能群を示す。
論文 参考訳(メタデータ) (2023-05-26T19:22:03Z) - MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation [34.61940502872307]
MultiDiffusionは、汎用的で制御可能な画像生成を可能にする統一されたフレームワークである。
高品質で多様な画像を生成するために,MultiDiffusionが容易に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-02-16T06:28:29Z) - Meta Internal Learning [88.68276505511922]
単一画像生成のための内部学習は、単一の画像に基づいて新しい画像を生成するようにジェネレータを訓練するフレームワークである。
本稿では,サンプル画像の内部統計をより効果的にモデル化するために,画像集合のトレーニングを可能にするメタラーニング手法を提案する。
以上の結果から, 得られたモデルは, 多数の共通画像アプリケーションにおいて, シングルイメージのGANと同程度に適していることがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:27:38Z) - Generating Annotated High-Fidelity Images Containing Multiple Coherent
Objects [10.783993190686132]
コンテキスト情報を明示的に必要とせずに、複数のオブジェクトで画像を合成できるマルチオブジェクト生成フレームワークを提案する。
我々は,Multi-MNISTおよびCLEVRデータセットを用いた実験により,コヒーレンシーと忠実さの保存方法を示す。
論文 参考訳(メタデータ) (2020-06-22T11:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。