論文の概要: Advancing Aspect-Based Sentiment Analysis through Deep Learning Models
- arxiv url: http://arxiv.org/abs/2404.03259v3
- Date: Mon, 9 Sep 2024 05:27:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 03:02:27.785366
- Title: Advancing Aspect-Based Sentiment Analysis through Deep Learning Models
- Title(参考訳): 深層学習モデルによるアスペクトベース感性分析の促進
- Authors: Chen Li, Huidong Tang, Jinli Zhang, Xiujing Guo, Debo Cheng, Yasuhiko Morimoto,
- Abstract要約: 本研究では,セティシィス(SentiSys)と呼ばれる革新的なエッジ強化GCNを導入し,無傷な特徴情報を保存しながら構文グラフをナビゲートする。
実験結果から,SentiSysを用いたアスペクトベース感情分析の性能向上が示された。
- 参考スコア(独自算出の注目度): 4.0064131990718606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect-based sentiment analysis predicts sentiment polarity with fine granularity. While graph convolutional networks (GCNs) are widely utilized for sentimental feature extraction, their naive application for syntactic feature extraction can compromise information preservation. This study introduces an innovative edge-enhanced GCN, named SentiSys, to navigate the syntactic graph while preserving intact feature information, leading to enhanced performance. Specifically,we first integrate a bidirectional long short-term memory (Bi-LSTM) network and a self-attention-based transformer. This combination facilitates effective text encoding, preventing the loss of information and predicting long dependency text. A bidirectional GCN (Bi-GCN) with message passing is then employed to encode relationships between entities. Additionally, unnecessary information is filtered out using an aspect-specific masking technique. To validate the effectiveness of our proposed model, we conduct extensive evaluation experiments on four benchmark datasets. The experimental results demonstrate enhanced performance in aspect-based sentiment analysis with the use of SentiSys.
- Abstract(参考訳): アスペクトに基づく感情分析は微粒度で感情極性を予測する。
グラフ畳み込みネットワーク (GCN) は感傷的特徴抽出に広く利用されているが, 構文的特徴抽出への応用は情報保存を損なう可能性がある。
本研究では,改良されたエッジ強化GCNであるSentiSysを導入し,特徴情報を保存しながら構文グラフをナビゲートし,性能を向上する。
具体的には、まず双方向長短期メモリ(Bi-LSTM)ネットワークと自己注意型トランスフォーマーを統合する。
この組み合わせは効果的なテキストエンコーディングを促進し、情報の喪失を防ぎ、長い依存テキストを予測する。
次に、メッセージパッシングを伴う双方向GCN(Bi-GCN)を使用して、エンティティ間の関係をエンコードする。
さらに、アスペクト固有のマスキング技術を用いて不要な情報をフィルタリングする。
提案モデルの有効性を検証するため,4つのベンチマークデータセットに対して広範囲な評価実験を行った。
実験結果から,SentiSysを用いたアスペクトベース感情分析の性能向上が示された。
関連論文リスト
- Relational Graph Convolutional Networks for Sentiment Analysis [0.0]
Graph Convolutional Networks(NRGC)は、グラフ内のノードとして表されるデータポイント間の依存関係をキャプチャすることで、解釈性と柔軟性を提供する。
本稿では,Amazon および Digikala データセットの製品レビューにおいて,BERT や RoBERTa などの事前学習言語モデルと RGCN アーキテクチャを用いたアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-04-16T07:27:49Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
レコメンデーションシステムは、クリックやレビューのようなユーザとイテムのインタラクションを利用して表現を学習する。
従来の研究では、様々な側面や意図にまたがるユーザの嗜好をモデル化することで、推奨精度と解釈可能性を改善する。
そこで本研究では,意味的側面と認識的相互作用を明らかにするためのチェーンベースのプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T15:44:09Z) - Knowledge Graph Enhanced Aspect-Level Sentiment Analysis [1.342834401139078]
本稿では,文脈固有の単語の意味の課題に対処し,感情分析を強化する手法を提案する。
BERTモデルの利点と知識グラフに基づく同義データを組み合わせる。
特定の側面に関連付けられた感情を分類するために、この手法は位置データを統合するメモリバンクを構築する。
データはDCGRUを用いて分析され、特定のアスペクト項に関連する感情特性をピンポイントする。
論文 参考訳(メタデータ) (2023-12-02T04:45:17Z) - A semantically enhanced dual encoder for aspect sentiment triplet
extraction [0.7291396653006809]
アスペクト・センチメント・トリプルト抽出(ASTE)はアスペクト・ベースの感情分析(ABSA)の重要なサブタスクである
従来の研究は、革新的なテーブル充填戦略によるASTEの強化に重点を置いてきた。
本稿では,BERTをベースとした基本エンコーダと,Bi-LSTMネットワークとGCN(Graph Convolutional Network)で構成される特定のエンコーダの両方を利用するフレームワークを提案する。
ベンチマークデータセットを用いた実験により,提案フレームワークの最先端性能を実証した。
論文 参考訳(メタデータ) (2023-06-14T09:04:14Z) - Contrastive variational information bottleneck for aspect-based
sentiment analysis [36.83876224466177]
CVIB(Contrastive Variational Information Bottleneck)フレームワークを用いて,アスペクトベース感情分析(ABSA)の素早い相関性を低減することを提案する。
提案するCVIBフレームワークは,元のネットワークと自走ネットワークで構成され,これら2つのネットワークは,コントラスト学習によって同時に最適化される。
提案手法は, 全体的な予測性能, 堅牢性, 一般化の点で, 強力な競合相手よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2023-03-06T02:52:37Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
本稿では,REDAffectiveLMと呼ばれる深層学習モデルを用いて,短文文書からの読み手感情検出のための新しい手法を提案する。
コンテクストに特化してリッチ表現に影響を与え, リッチBi-LSTM+Attentionに影響を及ぼすタンデムにおいて, トランスフォーマーに基づく事前学習言語モデルを用いることで, リッチ表現に影響を及ぼす。
論文 参考訳(メタデータ) (2023-01-21T19:28:25Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。