Benchmarking Parameter Control Methods in Differential Evolution for Mixed-Integer Black-Box Optimization
- URL: http://arxiv.org/abs/2404.03303v1
- Date: Thu, 4 Apr 2024 08:54:15 GMT
- Title: Benchmarking Parameter Control Methods in Differential Evolution for Mixed-Integer Black-Box Optimization
- Authors: Ryoji Tanabe,
- Abstract summary: Differential evolution (DE) generally requires parameter control methods (PCMs) for the scale factor and crossover rate.
This paper benchmarks PCMs in DE on the mixed-integer black-box optimization benchmarking function (bbob-mixint) suite.
Although the PCM of SHADE is state-of-the-art for numerical black-box optimization, our results show its poor performance for mixed-integer black-box optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential evolution (DE) generally requires parameter control methods (PCMs) for the scale factor and crossover rate. Although a better understanding of PCMs provides a useful clue to designing an efficient DE, their effectiveness is poorly understood in mixed-integer black-box optimization. In this context, this paper benchmarks PCMs in DE on the mixed-integer black-box optimization benchmarking function (bbob-mixint) suite in a component-wise manner. First, we demonstrate that the best PCM significantly depends on the combination of the mutation strategy and repair method. Although the PCM of SHADE is state-of-the-art for numerical black-box optimization, our results show its poor performance for mixed-integer black-box optimization. In contrast, our results show that some simple PCMs (e.g., the PCM of CoDE) perform the best in most cases. Then, we demonstrate that a DE with a suitable PCM performs significantly better than CMA-ES with integer handling for larger budgets of function evaluations. Finally, we show how the adaptation in the PCM of SHADE fails.
Related papers
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Covariance-Adaptive Sequential Black-box Optimization for Diffusion Targeted Generation [60.41803046775034]
We show how to perform user-preferred targeted generation via diffusion models with only black-box target scores of users.
Experiments on both numerical test problems and target-guided 3D-molecule generation tasks show the superior performance of our method in achieving better target scores.
arXiv Detail & Related papers (2024-06-02T17:26:27Z) - CatCMA : Stochastic Optimization for Mixed-Category Problems [9.13074910982872]
Black-box optimization problems often require simultaneously optimizing different types of variables, such as continuous, integer, and categorical variables.
Several Bayesian optimization methods can deal with mixed-category black-box optimization (MC-BBO), but they suffer from a lack of scalability to high-dimensional problems and internal computational cost.
This paper proposes CatCMA, a new optimization method for MC-BBO problems.
arXiv Detail & Related papers (2024-05-16T10:11:18Z) - PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial
Surrogates [0.0]
We introduce a surrogate-based black-box optimization method, termed Polynomial-model-based optimization (PMBO)
We compare the performance of PMBO with several optimization methods for a set of analytic test functions.
Remarkably, PMBO performs comparably with state-of-the-art evolutionary algorithms.
arXiv Detail & Related papers (2024-03-12T10:21:21Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Moreau Envelope ADMM for Decentralized Weakly Convex Optimization [55.2289666758254]
This paper proposes a proximal variant of the alternating direction method of multipliers (ADMM) for distributed optimization.
The results of our numerical experiments indicate that our method is faster and more robust than widely-used approaches.
arXiv Detail & Related papers (2023-08-31T14:16:30Z) - (1+1)-CMA-ES with Margin for Discrete and Mixed-Integer Problems [6.181926091202142]
This paper introduces the margin correction into (1+1)-CMA-ES, an elitist version of CMA-ES.
The (1+1)-CMA-ES is often advantageous for unimodal functions and can be computationally less expensive.
The numerical simulation using benchmark functions on mixed-integer, integer, and binary domains shows that (1+1)-CMA-ES with margin outperforms the CMA-ES with margin.
arXiv Detail & Related papers (2023-05-01T14:34:55Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Enhancing Explainability of Hyperparameter Optimization via Bayesian
Algorithm Execution [13.037647287689438]
We study the combination of HPO with interpretable machine learning (IML) methods such as partial dependence plots.
We propose a modified HPO method which efficiently searches for optimum global predictive performance.
Our method returns more reliable explanations of the underlying black-box without a loss of optimization performance.
arXiv Detail & Related papers (2022-06-11T07:12:04Z) - Fast and Efficient MMD-based Fair PCA via Optimization over Stiefel
Manifold [41.58534159822546]
This paper defines fair principal component analysis (PCA) as minimizing the maximum discrepancy (MMD) between dimensionality-reduced conditional distributions.
We provide optimality guarantees and explicitly show the theoretical effect in practical settings.
arXiv Detail & Related papers (2021-09-23T08:06:02Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
We present a novel distributionally robust Bayesian optimization algorithm (DRBO) for zeroth-order, noisy optimization.
Our algorithm provably obtains sub-linear robust regret in various settings.
We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2020-02-20T22:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.