Site-specific Deterministic Temperature and Humidity Forecasts with Explainable and Reliable Machine Learning
- URL: http://arxiv.org/abs/2404.03310v1
- Date: Thu, 4 Apr 2024 09:12:13 GMT
- Title: Site-specific Deterministic Temperature and Humidity Forecasts with Explainable and Reliable Machine Learning
- Authors: MengMeng Han, Tennessee Leeuwenburg, Brad Murphy,
- Abstract summary: Recent developments in machine learning have prompted increasing interest in applying ML as a novel approach towards this problem.
We develop a working ML framework, named 'Multi-SiteBoost' and initial testing results show a significant improvement compared with gridded values from bias-corrected NWP models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Site-specific weather forecasts are essential to accurate prediction of power demand and are consequently of great interest to energy operators. However, weather forecasts from current numerical weather prediction (NWP) models lack the fine-scale detail to capture all important characteristics of localised real-world sites. Instead they provide weather information representing a rectangular gridbox (usually kilometres in size). Even after post-processing and bias correction, area-averaged information is usually not optimal for specific sites. Prior work on site optimised forecasts has focused on linear methods, weighted consensus averaging, time-series methods, and others. Recent developments in machine learning (ML) have prompted increasing interest in applying ML as a novel approach towards this problem. In this study, we investigate the feasibility of optimising forecasts at sites by adopting the popular machine learning model gradient boosting decision tree, supported by the Python version of the XGBoost package. Regression trees have been trained with historical NWP and site observations as training data, aimed at predicting temperature and dew point at multiple site locations across Australia. We developed a working ML framework, named 'Multi-SiteBoost' and initial testing results show a significant improvement compared with gridded values from bias-corrected NWP models. The improvement from XGBoost is found to be comparable with non-ML methods reported in literature. With the insights provided by SHapley Additive exPlanations (SHAP), this study also tests various approaches to understand the ML predictions and increase the reliability of the forecasts generated by ML.
Related papers
- Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models [1.8067095934521364]
Recent machine learning (ML) models can harness vast datasets for accurate predictions at large spatial scales.
This study explores questions regarding model design and data needed for inputs and training to improve performance.
arXiv Detail & Related papers (2024-10-23T15:36:59Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Handling Concept Drift in Global Time Series Forecasting [10.732102570751392]
We propose two new concept drift handling methods, namely: Error Contribution Weighting (ECW) and Gradient Descent Weighting (GDW)
These methods use two forecasting models which are separately trained with the most recent series and all series, and finally, the weighted average of the forecasts provided by the two models are considered as the final forecasts.
arXiv Detail & Related papers (2023-04-04T03:46:25Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
We propose a two stage probabilistic forecasting framework able to generate highly accurate, reliable, and sharp forecasts.
The framework offers full transparency on both the point forecasts and the prediction intervals (PIs)
To highlight the performance and the applicability of the proposed framework, real data from two PV parks located in Southern Germany are employed.
arXiv Detail & Related papers (2021-08-05T12:59:38Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Machine learning for total cloud cover prediction [0.0]
We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods.
Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill.
RF models provide the smallest increase in predictive performance, while POLR and GBM approaches perform best.
arXiv Detail & Related papers (2020-01-16T17:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.