F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data
- URL: http://arxiv.org/abs/2406.16221v1
- Date: Sun, 23 Jun 2024 21:28:50 GMT
- Title: F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data
- Authors: Zexing Xu, Linjun Zhang, Sitan Yang, Rasoul Etesami, Hanghang Tong, Huan Zhang, Jiawei Han,
- Abstract summary: We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
- Score: 65.6499834212641
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Demand prediction is a crucial task for e-commerce and physical retail businesses, especially during high-stake sales events. However, the limited availability of historical data from these peak periods poses a significant challenge for traditional forecasting methods. In this paper, we propose a novel approach that leverages strategically chosen proxy data reflective of potential sales patterns from similar entities during non-peak periods, enriched by features learned from a graph neural networks (GNNs)-based forecasting model, to predict demand during peak events. We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm that leverages proxy data from non-peak periods and GNN-generated relational metadata to learn feature-specific layer parameters, thereby adapting to demand forecasts for peak events. Theoretically, we show that by considering domain similarities through task-specific metadata, our model achieves improved generalization, where the excess risk decreases as the number of training tasks increases. Empirical evaluations on large-scale industrial datasets demonstrate the superiority of our approach. Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
Related papers
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Optimizing Sales Forecasts through Automated Integration of Market Indicators [0.0]
This work investigates the potential of data-driven techniques to automatically select and integrate market indicators for improving customer demand predictions.
By adopting an exploratory methodology, we integrate macroeconomic time series, such as national GDP growth, into textitNeural Prophet and textitSARIMAX forecasting models.
It could be shown that forecasts can be significantly enhanced by incorporating external information.
arXiv Detail & Related papers (2024-05-15T08:11:41Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - Amortised Inference in Bayesian Neural Networks [0.0]
We introduce the Amortised Pseudo-Observation Variational Inference Bayesian Neural Network (APOVI-BNN)
We show that the amortised inference is of similar or better quality to those obtained through traditional variational inference.
We then discuss how the APOVI-BNN may be viewed as a new member of the neural process family.
arXiv Detail & Related papers (2023-09-06T14:02:33Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
We propose an approach to estimate the number of samples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset.
We introduce a novel piecewise power law (PPL) that handles the two data differently.
arXiv Detail & Related papers (2023-03-02T21:48:22Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
Using a public and a novel proprietary data set of commercial data, this research shows that the proposed system enables analysts to both cluster their user base and plan demand at a granular level.
This work seeks to introduce TDA-based clustering of time series and clusterwise regression with matrix factorization methods as viable tools for the practitioner.
arXiv Detail & Related papers (2020-09-08T12:10:10Z) - Profit-oriented sales forecasting: a comparison of forecasting
techniques from a business perspective [3.613072342189595]
This paper compares a large array of techniques for 35 times series that consist of both industry data from the Coca-Cola Company and publicly available datasets.
It introduces a novel and completely automated profit-driven approach that takes into account the expected profit that a technique can create during both the model building and evaluation process.
arXiv Detail & Related papers (2020-02-03T14:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.