Piecemeal Quantum Telescope: Exponential Precision with Super Robustness and Efficiency
- URL: http://arxiv.org/abs/2404.03432v3
- Date: Mon, 22 Jul 2024 12:04:04 GMT
- Title: Piecemeal Quantum Telescope: Exponential Precision with Super Robustness and Efficiency
- Authors: Jian Leng, Yi-Xin Shen, Zhou-Kai Cao, Xiang-Bin Wang,
- Abstract summary: piecemeal quantum telescope through bit-by-bit iteration.
fault tolerant to statistical error, it requests only a small number of incident single-photons in detecting the star angle.
- Score: 0.38811062755861964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the piecemeal quantum telescope through bit-by-bit iteration using different baselines. It improves precision exponentially with number of baselines, and it works robustly under large observation errors such as statistical errors, channel noise, operational errors and so on. For example, under the noisy channel of random phase drifts, our method can provide an exponential precision provided that the detected data is not entirely noisy. Being fault tolerant to statistical error, it requests only a small number of incident single-photons in detecting the star angle with exponential precision. As a result, it requests to detect only a few hundreds of photons from the target star for a precision breaking classical limit by 4 to 5 magnitude orders. This demonstrates a super efficiency.
Related papers
- Superresolution imaging with entanglement-enhanced telescopy [0.6849746341453253]
Long-baseline interferometry will be possible using pre-shared entanglement between two telescope sites.
We show that spatial-mode sorting at each telescope, along with pre-shared entanglement, can be used to realize the most general multimode interferometry.
arXiv Detail & Related papers (2025-04-04T02:12:10Z) - Piecemeal method revisited [0.38811062755861964]
We present an optical interferometric scheme with at least two telescopes that achieves higher precision than other weak-light interference-based methods.
We show that both the original and extended piecemeal methods exhibit strong robustness against errors in baseline lengths and orientations.
arXiv Detail & Related papers (2025-02-10T00:17:56Z) - Long distance spin shuttling enabled by few-parameter velocity optimization [37.69303106863453]
Spin qubit shuttling via moving conveyor-mode quantum dots in Si/SiGe offers a promising route to scalable miniaturized quantum computing.
Recent modeling of dephasing via valley degrees of freedom and well disorder dictate a slow shutting speed which seems to limit errors to above correction thresholds if not mitigated.
We show that typical errors for 10 $mu$m shuttling at constant speed results in O(1) error, using fast, automatically differentiable numerics and including improved disorder modeling and potential noise ranges.
arXiv Detail & Related papers (2024-09-11T20:21:45Z) - Enhancing Events in Neutrino Telescopes through Deep Learning-Driven Super-Resolution [0.0]
We propose a novel technique that learns photon transport through the detector medium through the use of deep learning-driven super-resolution of data events.
Our strategy arranges additional virtual'' optical modules within an existing detector geometry and trains a convolutional neural network to predict the hits on these virtual optical modules.
arXiv Detail & Related papers (2024-08-16T01:20:27Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Quantum resolution limit of long-baseline imaging using distributed entanglement [0.6849746341453253]
We show that a receiver that employs spatial-mode sorting at each telescope site can be used to mimic the most general multimode interferometer acting on light collected from the telescopes.
We discuss how this entanglement assisted strategy can be used to achieve the quantum-limited precision of any complex quantitative imaging task involving any number of telescopes.
arXiv Detail & Related papers (2024-06-24T16:50:10Z) - Optimal Low-Depth Quantum Signal-Processing Phase Estimation [0.029541734875307393]
We introduce Quantum Signal-Processing Phase Estimation algorithms that are robust against challenges and achieve optimal performance.
Our approach achieves an unprecedented standard deviation accuracy of $10-4$ radians for estimating unwanted swap angles in superconducting two-qubit experiments.
Our results are rigorously validated against the quantum Fisher information, confirming our protocol's ability to achieve unmatched precision for two-qubit gate learning.
arXiv Detail & Related papers (2024-06-17T10:33:52Z) - Toward Efficient Visual Gyroscopes: Spherical Moments, Harmonics Filtering, and Masking Techniques for Spherical Camera Applications [83.8743080143778]
A visual gyroscope estimates camera rotation through images.
The integration of omnidirectional cameras, offering a larger field of view compared to traditional RGB cameras, has proven to yield more accurate and robust results.
Here, we address these challenges by introducing a novel visual gyroscope, which combines an Efficient Multi-Mask-Filter Rotation Estor and a Learning based optimization.
arXiv Detail & Related papers (2024-04-02T13:19:06Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - Quantum metrology of noisy spreading channels [0.0]
We provide the optimal measurement strategy for a class of noisy channels.
We show that, for small displacement, a squeezed vacuum probe field is optimal among strategies with same average energy.
arXiv Detail & Related papers (2022-08-19T15:05:26Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Distillation of Indistinguishable Photons [0.0]
A reliable source of identical (indistinguishable) photons is a prerequisite for interference effects.
We present a protocol which can be used to increase the indistinguishability of a photon source, to arbitrary accuracy.
We demonstrate the scheme is robust to detection and control errors in the optical components, and discuss the effect of other error sources.
arXiv Detail & Related papers (2022-03-29T02:27:07Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - A learning-based view extrapolation method for axial super-resolution [52.748944517480155]
Axial light field resolution refers to the ability to distinguish features at different depths by refocusing.
We propose a learning-based method to extrapolate novel views from axial volumes of sheared epipolar plane images.
arXiv Detail & Related papers (2021-03-11T07:22:13Z) - Two-photon amplitude interferometry for precision astrometry [0.0]
Two photons from different sources are interfered at two separate and decoupled stations.
angular precision on the order of $10$microarcsecond could be achieved in a single night's observation of two bright stars.
arXiv Detail & Related papers (2020-10-18T20:45:58Z) - Single-shot number-resolved detection of microwave photons with error
mitigation [2.053047357590719]
We implement a single-shot, high-fidelity photon number-resolving detector of up to 15 microwave photons in a cavity-qubit circuit QED platform.
This detector functions by measuring a series of generalized parity operators which make up the bits in the binary decomposition of the photon number.
We show that the mitigation is efficiently scalable to an $M$-mode system provided that the errors are independent and sufficiently small.
arXiv Detail & Related papers (2020-10-09T21:37:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.