論文の概要: DQ-DETR: DETR with Dynamic Query for Tiny Object Detection
- arxiv url: http://arxiv.org/abs/2404.03507v6
- Date: Fri, 01 Nov 2024 07:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 21:01:28.156872
- Title: DQ-DETR: DETR with Dynamic Query for Tiny Object Detection
- Title(参考訳): DQ-DETR: ティニーオブジェクト検出のための動的クエリ付きDTR
- Authors: Yi-Xin Huang, Hou-I Liu, Hong-Han Shuai, Wen-Huang Cheng,
- Abstract要約: DQ-DETRは3つの異なるコンポーネントから構成される。
DQ-DETRは、カテゴリカウントモジュールからの予測と密度マップを使用して、オブジェクトクエリの数を動的に調整する。
我々のモデルは、AI-TOD-V2データセット上で最先端のmAPを30.2%達成し、従来のCNNベースおよびDETRライクな手法より優れている。
- 参考スコア(独自算出の注目度): 29.559819542066236
- License:
- Abstract: Despite previous DETR-like methods having performed successfully in generic object detection, tiny object detection is still a challenging task for them since the positional information of object queries is not customized for detecting tiny objects, whose scale is extraordinarily smaller than general objects. Also, DETR-like methods using a fixed number of queries make them unsuitable for aerial datasets, which only contain tiny objects, and the numbers of instances are imbalanced between different images. Thus, we present a simple yet effective model, named DQ-DETR, which consists of three different components: categorical counting module, counting-guided feature enhancement, and dynamic query selection to solve the above-mentioned problems. DQ-DETR uses the prediction and density maps from the categorical counting module to dynamically adjust the number of object queries and improve the positional information of queries. Our model DQ-DETR outperforms previous CNN-based and DETR-like methods, achieving state-of-the-art mAP 30.2% on the AI-TOD-V2 dataset, which mostly consists of tiny objects. Our code will be available at https://github.com/hoiliu-0801/DQ-DETR.
- Abstract(参考訳): 従来のDETRのような手法がジェネリックオブジェクト検出に成功しているにも関わらず、オブジェクトクエリの位置情報は、通常オブジェクトよりもスケールが極端に小さい小さなオブジェクトを検出するためにカスタマイズされていないため、小さなオブジェクト検出は依然として難しい課題である。
また、一定の数のクエリを使用したDETRライクなメソッドは、小さなオブジェクトのみを含む空中データセットには適せず、インスタンスの数は異なるイメージ間で不均衡である。
そこで本稿では,DQ-DETRという,分類的カウントモジュール,カウント誘導機能拡張,動的クエリ選択という,3つのコンポーネントから構成されるシンプルなモデルを提案する。
DQ-DETRは、カテゴリカウントモジュールからの予測と密度マップを使用して、オブジェクトクエリの数を動的に調整し、クエリの位置情報を改善する。
我々のモデルDQ-DETRは従来のCNNやDETRのような手法より優れており、AI-TOD-V2データセット上で最先端のmAPを30.2%達成している。
私たちのコードはhttps://github.com/hoiliu-0801/DQ-DETRで公開されます。
関連論文リスト
- Dynamic Object Queries for Transformer-based Incremental Object Detection [45.41291377837515]
インクリメンタルオブジェクト検出は、新しいクラスを逐次学習することを目的としている。
従来の方法論は主に知識の蒸留と模範的な再生を通じて忘れる問題に取り組む。
安定塑性トレードオフを実現するためのモデル表現能力を漸進的に拡張するDyQ-DETRを提案する。
論文 参考訳(メタデータ) (2024-07-31T15:29:34Z) - SEED: A Simple and Effective 3D DETR in Point Clouds [72.74016394325675]
ポイントクラウドの分散度が高く,不均一な分布のため,主な課題は困難である,と我々は主張する。
点雲から3次元物体を検出するための簡便で効果的な3次元DETR法(SEED)を提案する。
論文 参考訳(メタデータ) (2024-07-15T14:21:07Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
本稿では,検出モデルに自己再構成機構を導入し,それと微小物体との強い相関関係を明らかにする。
具体的には、再構成画像と入力の差分マップを構築して、検出器の首の内側に再構成ヘッドを配置し、小さな物体に対して高い感度を示す。
さらに、小さな特徴表現をより明確にするために、差分マップガイド機能拡張(DGFE)モジュールを開発する。
論文 参考訳(メタデータ) (2024-05-18T12:22:26Z) - Small Object Detection by DETR via Information Augmentation and Adaptive
Feature Fusion [4.9860018132769985]
RT-DETRモデルは、リアルタイムオブジェクト検出では良好に動作するが、小さなオブジェクト検出精度では不十分である。
異なるレベルから各特徴マップに学習可能なパラメータを割り当てる適応的特徴融合アルゴリズムを提案する。
これにより、異なるスケールでオブジェクトの特徴をキャプチャするモデルの能力が向上し、小さなオブジェクトを検出する精度が向上する。
論文 参考訳(メタデータ) (2024-01-16T00:01:23Z) - Contrastive Learning for Multi-Object Tracking with Transformers [79.61791059432558]
我々は、DETRをインスタンスレベルのコントラスト損失を用いてMOTモデルに変換する方法を示す。
本手法では,検出能力を維持しながらオブジェクトの外観を学習し,オーバーヘッドを少なく抑える。
そのパフォーマンスは、BDD100Kデータセットにおいて、以前の最先端の+2.6 mMOTAを上回っている。
論文 参考訳(メタデータ) (2023-11-14T10:07:52Z) - Siamese-DETR for Generic Multi-Object Tracking [16.853363984562602]
従来のマルチオブジェクト追跡(MOT)は、事前に定義されたクローズドセットカテゴリに属するオブジェクトを追跡することに限定されている。
Siamese-DETRは、所定のテキストプロンプトとテンプレート画像を用いて、事前に定義されたカテゴリを超えてオブジェクトを追跡する。
Siamese-DETRはGMOT-40データセット上の既存のMOTメソッドを大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-10-27T03:32:05Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - D2Q-DETR: Decoupling and Dynamic Queries for Oriented Object Detection
with Transformers [14.488821968433834]
オブジェクト指向オブジェクト検出のためのエンドツーエンドフレームワークを提案する。
我々のフレームワークはDETRに基づいており、ボックスレグレッションヘッドはポイント予測ヘッドに置き換えられている。
最大かつ挑戦的なDOTA-v1.0データセットとDOTA-v1.5データセットの実験は、D2Q-DETRが既存のNMSベースおよびNMSのないオブジェクト指向オブジェクト検出方法より優れていることを示している。
論文 参考訳(メタデータ) (2023-03-01T14:36:19Z) - Few-shot Object Counting and Detection [25.61294147822642]
我々は、ターゲットオブジェクトクラスのいくつかの例のバウンディングボックスを考慮に入れ、ターゲットクラスのすべてのオブジェクトをカウントし、検出する新しいタスクに取り組む。
このタスクは、数ショットのオブジェクトカウントと同じ監督を共有しますが、オブジェクトのバウンディングボックスと総オブジェクトカウントを出力します。
本稿では,新しい2段階トレーニング戦略と,新しい不確実性に留意した小ショットオブジェクト検出器であるCounting-DETRを紹介する。
論文 参考訳(メタデータ) (2022-07-22T10:09:18Z) - End-to-End Object Detection with Transformers [88.06357745922716]
本稿では,オブジェクト検出を直接セット予測問題とみなす新しい手法を提案する。
我々のアプローチは検出パイプラインを合理化し、手作業で設計された多くのコンポーネントの必要性を効果的に除去する。
この新しいフレームワークの主な構成要素は、Detection TRansformerまたはDETRと呼ばれ、セットベースのグローバルな損失である。
論文 参考訳(メタデータ) (2020-05-26T17:06:38Z) - Dynamic Refinement Network for Oriented and Densely Packed Object
Detection [75.29088991850958]
本稿では,機能選択モジュール (FSM) と動的改善ヘッド (DRH) の2つの新しいコンポーネントからなる動的精細化ネットワークを提案する。
我々のFSMは、ニューロンがターゲットオブジェクトの形状や向きに応じて受容野を調整できるのに対して、DRHはオブジェクト認識の方法で動的に予測を洗練させる。
我々は、DOTA、HRSC2016、SKU110K、および我々のSKU110K-Rデータセットを含むいくつかの公開ベンチマークで定量的評価を行う。
論文 参考訳(メタデータ) (2020-05-20T11:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。