HAPNet: Toward Superior RGB-Thermal Scene Parsing via Hybrid, Asymmetric, and Progressive Heterogeneous Feature Fusion
- URL: http://arxiv.org/abs/2404.03527v2
- Date: Sat, 6 Apr 2024 07:49:14 GMT
- Title: HAPNet: Toward Superior RGB-Thermal Scene Parsing via Hybrid, Asymmetric, and Progressive Heterogeneous Feature Fusion
- Authors: Jiahang Li, Peng Yun, Qijun Chen, Rui Fan,
- Abstract summary: In this study, we explore a feasible strategy to fully exploit VFM features for RGB-thermal scene parsing.
Specifically, we design a hybrid, asymmetric encoder that incorporates both a VFM and a convolutional neural network.
This design allows for more effective extraction of complementary heterogeneous features, which are subsequently fused in a dual-path, progressive manner.
- Score: 15.538174593176166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-fusion networks have shown significant promise for RGB-thermal scene parsing. However, the majority of existing studies have relied on symmetric duplex encoders for heterogeneous feature extraction and fusion, paying inadequate attention to the inherent differences between RGB and thermal modalities. Recent progress in vision foundation models (VFMs) trained through self-supervision on vast amounts of unlabeled data has proven their ability to extract informative, general-purpose features. However, this potential has yet to be fully leveraged in the domain. In this study, we take one step toward this new research area by exploring a feasible strategy to fully exploit VFM features for RGB-thermal scene parsing. Specifically, we delve deeper into the unique characteristics of RGB and thermal modalities, thereby designing a hybrid, asymmetric encoder that incorporates both a VFM and a convolutional neural network. This design allows for more effective extraction of complementary heterogeneous features, which are subsequently fused in a dual-path, progressive manner. Moreover, we introduce an auxiliary task to further enrich the local semantics of the fused features, thereby improving the overall performance of RGB-thermal scene parsing. Our proposed HAPNet, equipped with all these components, demonstrates superior performance compared to all other state-of-the-art RGB-thermal scene parsing networks, achieving top ranks across three widely used public RGB-thermal scene parsing datasets. We believe this new paradigm has opened up new opportunities for future developments in data-fusion scene parsing approaches.
Related papers
- Channel and Spatial Relation-Propagation Network for RGB-Thermal
Semantic Segmentation [10.344060599932185]
RGB-Thermal (RGB-T) semantic segmentation has shown great potential in handling low-light conditions.
The key to RGB-T semantic segmentation is to effectively leverage the complementarity nature of RGB and thermal images.
arXiv Detail & Related papers (2023-08-24T03:43:47Z) - Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation [19.41334573257174]
Traditional methods mostly use RGB images which are heavily affected by lighting conditions, eg, darkness.
Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation.
This work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation.
arXiv Detail & Related papers (2023-06-17T14:28:08Z) - Interactive Context-Aware Network for RGB-T Salient Object Detection [7.544240329265388]
We propose a novel network called Interactive Context-Aware Network (ICANet)
ICANet contains three modules that can effectively perform the cross-modal and cross-scale fusions.
Experiments prove that our network performs favorably against the state-of-the-art RGB-T SOD methods.
arXiv Detail & Related papers (2022-11-11T10:04:36Z) - Does Thermal Really Always Matter for RGB-T Salient Object Detection? [153.17156598262656]
This paper proposes a network named TNet to solve the RGB-T salient object detection (SOD) task.
In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image.
On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality.
arXiv Detail & Related papers (2022-10-09T13:50:12Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-thermal object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair.
In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD.
Experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-07T20:26:09Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - Edge-aware Guidance Fusion Network for RGB Thermal Scene Parsing [4.913013713982677]
We propose an edge-aware guidance fusion network (EGFNet) for RGB thermal scene parsing.
To effectively fuse the RGB and thermal information, we propose a multimodal fusion module.
Considering the importance of high level semantic information, we propose a global information module and a semantic information module.
arXiv Detail & Related papers (2021-12-09T01:12:47Z) - Transformer-based Network for RGB-D Saliency Detection [82.6665619584628]
Key to RGB-D saliency detection is to fully mine and fuse information at multiple scales across the two modalities.
We show that transformer is a uniform operation which presents great efficacy in both feature fusion and feature enhancement.
Our proposed network performs favorably against state-of-the-art RGB-D saliency detection methods.
arXiv Detail & Related papers (2021-12-01T15:53:58Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Data-Level Recombination and Lightweight Fusion Scheme for RGB-D Salient
Object Detection [73.31632581915201]
We propose a novel data-level recombination strategy to fuse RGB with D (depth) before deep feature extraction.
A newly lightweight designed triple-stream network is applied over these novel formulated data to achieve an optimal channel-wise complementary fusion status between the RGB and D.
arXiv Detail & Related papers (2020-08-07T10:13:05Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.