CodeEditorBench: Evaluating Code Editing Capability of Large Language Models
- URL: http://arxiv.org/abs/2404.03543v2
- Date: Sat, 6 Apr 2024 04:29:25 GMT
- Title: CodeEditorBench: Evaluating Code Editing Capability of Large Language Models
- Authors: Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma, Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi LI, Ruibo Liu, Yue Wang, Shuyue Guo, Xingwei Qu, Xiang Yue, Ge Zhang, Wenhu Chen, Jie Fu,
- Abstract summary: Large Language Models (LLMs) for code are rapidly evolving, with code editing emerging as a critical capability.
We introduce CodeEditorBench, an evaluation framework designed to rigorously assess the performance of LLMs in code editing tasks.
We curate diverse coding challenges and scenarios from five sources, covering various programming languages, complexity levels, and editing tasks.
- Score: 49.387195629660994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) for code are rapidly evolving, with code editing emerging as a critical capability. We introduce CodeEditorBench, an evaluation framework designed to rigorously assess the performance of LLMs in code editing tasks, including debugging, translating, polishing, and requirement switching. Unlike existing benchmarks focusing solely on code generation, CodeEditorBench emphasizes real-world scenarios and practical aspects of software development. We curate diverse coding challenges and scenarios from five sources, covering various programming languages, complexity levels, and editing tasks. Evaluation of 19 LLMs reveals that closed-source models (particularly Gemini-Ultra and GPT-4), outperform open-source models in CodeEditorBench, highlighting differences in model performance based on problem types and prompt sensitivities. CodeEditorBench aims to catalyze advancements in LLMs by providing a robust platform for assessing code editing capabilities. We will release all prompts and datasets to enable the community to expand the dataset and benchmark emerging LLMs. By introducing CodeEditorBench, we contribute to the advancement of LLMs in code editing and provide a valuable resource for researchers and practitioners.
Related papers
- Model Editing for LLMs4Code: How Far are We? [15.966127307546374]
Large Language Models for Code (LLMs4Code) have been found to exhibit outstanding performance in the software engineering domain.
However, even the most advanced LLMs4Code can inevitably contain incorrect or outdated code knowledge.
Model editing is a new technical field for effectively and efficiently correcting erroneous knowledge in LLMs.
arXiv Detail & Related papers (2024-11-11T00:18:54Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
We present codellm-devkit (hereafter, CLDK'), an open-source library that significantly simplifies the process of performing program analysis.
CLDK offers developers an intuitive and user-friendly interface, making it incredibly easy to provide rich program analysis context to code LLMs.
arXiv Detail & Related papers (2024-10-16T20:05:59Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
We present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data.
We propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review.
arXiv Detail & Related papers (2024-05-29T16:57:33Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBench is a benchmark that evaluates large language models (LLMs) across various stages of the software development lifecycle.
Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench.
Our findings offer actionable insights for the future development of LLMs toward real-world programming applications.
arXiv Detail & Related papers (2024-03-13T15:13:44Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Can It Edit? Evaluating the Ability of Large Language Models to Follow Code Editing Instructions [6.367360745627828]
We introduce a benchmark of code editing tasks and use it to evaluate several cutting edge LLMs.
Our evaluation exposes a significant gap between the capabilities of state-of-the-art open and closed models.
We introduce a new, carefully curated, permissively licensed training dataset of code editing tasks coupled with natural language instructions.
arXiv Detail & Related papers (2023-12-11T02:27:45Z) - InstructCoder: Instruction Tuning Large Language Models for Code Editing [26.160498475809266]
We explore the use of Large Language Models (LLMs) to edit code based on user instructions.
InstructCoder is the first instruction-tuning dataset designed to adapt LLMs for general-purpose code editing.
Our findings reveal that open-source LLMs fine-tuned on InstructCoder can significantly enhance the accuracy of code edits.
arXiv Detail & Related papers (2023-10-31T10:15:35Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
We present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence.
Our library supports a collection of pretrained Code LLM models and popular code benchmarks.
We hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering.
arXiv Detail & Related papers (2023-05-31T05:24:48Z) - GrACE: Generation using Associated Code Edits [23.643567386291988]
We endowing pre-trained large language models (LLMs) of code with the knowledge of prior, relevant edits.
The generative capability of the LLMs helps address the diversity in code changes and conditioning code generation on prior edits.
We evaluate two well-known LLMs, Codex and CodeT5, in zero-shot and fine-tuning settings respectively.
arXiv Detail & Related papers (2023-05-23T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.