論文の概要: How does Multi-Task Training Affect Transformer In-Context Capabilities? Investigations with Function Classes
- arxiv url: http://arxiv.org/abs/2404.03558v1
- Date: Thu, 4 Apr 2024 16:15:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 14:12:26.348627
- Title: How does Multi-Task Training Affect Transformer In-Context Capabilities? Investigations with Function Classes
- Title(参考訳): マルチタスク学習が変圧器のインコンテキスト能力に与える影響 : 機能授業による検討
- Authors: Harmon Bhasin, Timothy Ossowski, Yiqiao Zhong, Junjie Hu,
- Abstract要約: 大規模言語モデル(LLM)は、テキストとして提供される少数の例に基づいて、目に見えないタスクを実行するという異常な能力を示している。
我々は、ICLモデルによるデータ効率の向上と、より安定した収束を実現するための効果的なカリキュラム学習戦略をいくつか提案する。
実験の結果, ICLモデルでは, 従来の課題を混在させながら, 段階的に難しいタスクを学習することで, 難易度を効果的に学習できることが判明した。
- 参考スコア(独自算出の注目度): 6.652837942112205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLM) have recently shown the extraordinary ability to perform unseen tasks based on few-shot examples provided as text, also known as in-context learning (ICL). While recent works have attempted to understand the mechanisms driving ICL, few have explored training strategies that incentivize these models to generalize to multiple tasks. Multi-task learning (MTL) for generalist models is a promising direction that offers transfer learning potential, enabling large parameterized models to be trained from simpler, related tasks. In this work, we investigate the combination of MTL with ICL to build models that efficiently learn tasks while being robust to out-of-distribution examples. We propose several effective curriculum learning strategies that allow ICL models to achieve higher data efficiency and more stable convergence. Our experiments reveal that ICL models can effectively learn difficult tasks by training on progressively harder tasks while mixing in prior tasks, denoted as mixed curriculum in this work. Our code and models are available at https://github.com/harmonbhasin/curriculum_learning_icl .
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキストとして提供される数少ない例(in-context learning (ICL)としても知られる)に基づいて、目に見えないタスクを実行する能力を示した。
最近の研究はICLを駆動するメカニズムを理解しようと試みているが、これらのモデルを複数のタスクに一般化するための訓練戦略を探求する者はほとんどいない。
汎用モデルのためのマルチタスク学習(MTL)は、伝達学習の可能性を提供する有望な方向であり、より単純な関連するタスクから大きなパラメータ化モデルを訓練することができる。
本研究では,MLL と ICL を組み合わせることで,タスクを効率的に学習し,アウト・オブ・ディストリビューションの例に頑健なモデルを構築する。
我々は、ICLモデルによるデータ効率の向上と、より安定した収束を実現するための効果的なカリキュラム学習戦略をいくつか提案する。
実験の結果, ICLモデルでは, 従来の課題を混在させながら, 難易度の高い課題を学習することで, 難易度の高い課題を効果的に学習できることが判明した。
私たちのコードとモデルはhttps://github.com/harmonbhasin/curriculum_learning_icl で利用可能です。
関連論文リスト
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtendは、Mixture-of-Experts (MoE)モデルのモダリティ適応と拡張を効率化する効果的なフレームワークである。
MoExtendは、新しいエキスパートをトレーニング済みのMoEモデルにシームレスに統合し、トレーニング済みのモデルをチューニングすることなく、新しい知識を提供する。
論文 参考訳(メタデータ) (2024-08-07T02:28:37Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
textbfGPTスケールモデルをマージするための textbfModel textbfExclusive textbfTask textbfArithmetic を提案する。
提案するMetaGPTは,データに依存しず,検索処理を回避し,低コストで実装が容易なメタGPTである。
論文 参考訳(メタデータ) (2024-06-17T10:12:45Z) - Exploring intra-task relations to improve meta-learning algorithms [1.223779595809275]
我々は,タスクの効果的なミニバッチによるトレーニング安定性向上のために,タスク関係の外部知識を活用することを目的としている。
ミニバッチでタスクの多様なセットを選択すると、完全な勾配がより良く見積もられるため、トレーニングにおけるノイズの低減につながる、という仮説を立てる。
論文 参考訳(メタデータ) (2023-12-27T15:33:52Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
本稿では、複数の視覚タスクを実行でき、他の下流タスクに効率的に適応できるモデルを提案する。
提案手法は,単一タスク状態モデルに匹敵する結果を達成し,下流タスクの強力な一般化を実証する。
論文 参考訳(メタデータ) (2023-06-29T17:59:57Z) - JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for
Multi-task Mathematical Problem Solving [77.51817534090789]
マルチタスク数学問題の解法を専門とする統一中国語 PLM である textbfJiuZhang2.0 を提案する。
我々の考えは、中規模のモデルを維持し、マルチタスク設定におけるモデル容量を改善するために、Emphcross-taskの知識共有を利用することである。
論文 参考訳(メタデータ) (2023-06-19T15:45:36Z) - Concept-aware Training Improves In-context Learning Ability of Language
Models [0.0]
トランスフォーマーファミリーの最近の言語モデル(LM)の多くは、いわゆるインコンテキスト学習(ICL)能力を示している。
テキスト内情報をよりよく活用できるLMを作成する手法を提案する。
概念認識トレーニングのデータサンプリングはモデルの推論能力を継続的に改善する。
論文 参考訳(メタデータ) (2023-05-23T07:44:52Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
少ないショット学習は、少数の例から見れば、新しいタスクに対処できる表現を学習することを目的としている。
近年の研究では,タスク分布がモデルの性能に重要な役割を担っていることが示されている。
タスクの多様性がメタ学習アルゴリズムに与える影響を評価するために,多種多様なモデルとデータセットのタスク分布について検討する。
論文 参考訳(メタデータ) (2022-01-27T19:39:07Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z) - Learning Adaptable Policy via Meta-Adversarial Inverse Reinforcement
Learning for Decision-making Tasks [2.1485350418225244]
Meta- LearningとAdversarial Inverseforcement Learningを統合した適応型模倣学習モデルを構築します。
敵対的学習と逆強化学習メカニズムを利用して、利用可能なトレーニングタスクからポリシーと報酬機能を同時に学習します。
論文 参考訳(メタデータ) (2021-03-23T17:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。