論文の概要: DeViDe: Faceted medical knowledge for improved medical vision-language pre-training
- arxiv url: http://arxiv.org/abs/2404.03618v1
- Date: Thu, 4 Apr 2024 17:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 13:52:38.997765
- Title: DeViDe: Faceted medical knowledge for improved medical vision-language pre-training
- Title(参考訳): DeViDe:医療視力向上のための対面医療知識
- Authors: Haozhe Luo, Ziyu Zhou, Corentin Royer, Anjany Sekuboyina, Bjoern Menze,
- Abstract要約: 胸部X線に対する視覚言語による事前訓練は、主にペアのX線写真とラジオグラフィーレポートを活用することで大きな進歩を遂げた。
オープンウェブからの無線画像記述を利用するトランスフォーマーベースのDeViDeを提案する。
DeViDeは知識強化された視覚言語アライメントの3つの重要な特徴を取り入れている。
ゼロショット設定では、DeViDeは外部データセットの完全な教師付きモデルと互換性があり、3つの大規模データセットの最先端結果を達成する。
- 参考スコア(独自算出の注目度): 1.6567372257085946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language pre-training for chest X-rays has made significant strides, primarily by utilizing paired radiographs and radiology reports. However, existing approaches often face challenges in encoding medical knowledge effectively. While radiology reports provide insights into the current disease manifestation, medical definitions (as used by contemporary methods) tend to be overly abstract, creating a gap in knowledge. To address this, we propose DeViDe, a novel transformer-based method that leverages radiographic descriptions from the open web. These descriptions outline general visual characteristics of diseases in radiographs, and when combined with abstract definitions and radiology reports, provide a holistic snapshot of knowledge. DeViDe incorporates three key features for knowledge-augmented vision language alignment: First, a large-language model-based augmentation is employed to homogenise medical knowledge from diverse sources. Second, this knowledge is aligned with image information at various levels of granularity. Third, a novel projection layer is proposed to handle the complexity of aligning each image with multiple descriptions arising in a multi-label setting. In zero-shot settings, DeViDe performs comparably to fully supervised models on external datasets and achieves state-of-the-art results on three large-scale datasets. Additionally, fine-tuning DeViDe on four downstream tasks and six segmentation tasks showcases its superior performance across data from diverse distributions.
- Abstract(参考訳): 胸部X線に対する視覚言語による事前訓練は、主にペアのX線写真とラジオグラフィーレポートを活用することで大きな進歩を遂げた。
しかし、既存のアプローチは医療知識を効果的に符号化する際の課題に直面していることが多い。
放射線医学の報告が現在の病気の症状についての洞察を提供する一方で、医学的定義(現代の方法で用いられる)は過度に抽象的であり、知識のギャップを生じさせる。
そこで本研究では,オープンWebからのラジオグラフィ記述を活用するトランスフォーマーベースの新しい手法であるDeViDeを提案する。
これらの記述は、X線写真における疾患の一般的な視覚的特徴を概説し、抽象的な定義や放射線学の報告と組み合わせることで、知識の全体像を提供する。
DeViDeは知識強化された視覚言語アライメントの3つの重要な特徴を取り入れている。
第二に、この知識は様々なレベルの粒度の画像情報と一致している。
第3に、複数ラベル設定で生じる複数の記述と各画像の整合性を扱うため、新しいプロジェクション層を提案する。
ゼロショット設定では、DeViDeは外部データセットの完全な教師付きモデルと互換性があり、3つの大規模データセットの最先端結果を達成する。
さらに、下流の4つのタスクと6つのセグメンテーションタスクを微調整したDeViDeは、多様なディストリビューションのデータ間での優れたパフォーマンスを示している。
関連論文リスト
- ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
MVKLは,マルチビュー画像,詳細な表示,報告を含む最初のマルチモーダルマンモグラフィーデータセットである。
このデータセットに基づいて、教師なし事前学習のチャラリングタスクに焦点を当てる。
視覚,知識,言語機能を相乗化するフレームワークであるViKLを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:01:23Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - Intensive Vision-guided Network for Radiology Report Generation [22.030289124516326]
医用画像エンコーダにおける多視点視覚知覚をシミュレートし統合するためのGIAモジュールを提案する。
また,複数モーダル信号を用いて正確な一致したレポートを生成する方法,すなわち,予測済みの単語を領域認識型視覚コンテンツと統合して次の単語予測を行う方法について検討する。
論文 参考訳(メタデータ) (2024-02-06T06:46:46Z) - Unified Medical Image Pre-training in Language-Guided Common Semantic Space [39.61770813855078]
我々はUnified Medical Image Pre-Trainingフレームワーク(UniMedI)を提案する。
UniMedIは、診断レポートを一般的な意味空間として使用し、医療画像の多様なモダリティの統一表現を作成する。
10種類のデータセットにまたがる2次元画像と3次元画像の性能評価を行った。
論文 参考訳(メタデータ) (2023-11-24T22:01:12Z) - KiUT: Knowledge-injected U-Transformer for Radiology Report Generation [10.139767157037829]
X線画像から臨床的正確で一貫性のある段落を自動的に生成することを目的とする。
知識注入型U-Transformer (KiUT) を提案する。
論文 参考訳(メタデータ) (2023-06-20T07:27:28Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Align, Reason and Learn: Enhancing Medical Vision-and-Language
Pre-training with Knowledge [68.90835997085557]
本稿では,3つの視点から構造化された医療知識を高めるための体系的かつ効果的なアプローチを提案する。
まず、視覚エンコーダと言語エンコーダの表現を知識を通して整列する。
次に,多モード融合モデルに知識を注入し,入力画像とテキストの補足として知識を用いた推論を可能にする。
第3に、知識によって引き起こされるプレテキストタスクを設計することで、画像やテキストの最も重要な情報に重点を置くよう、モデルを指導する。
論文 参考訳(メタデータ) (2022-09-15T08:00:01Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - XRayGAN: Consistency-preserving Generation of X-ray Images from
Radiology Reports [19.360283053558604]
我々は,X線画像から高精細・高精細・高精細・高精細なX線画像を生成する手法を開発した。
この研究は、放射線学報告から一貫した高解像度のX線画像を生成する最初のものである。
論文 参考訳(メタデータ) (2020-06-17T05:32:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。